SCHUR-WEYL DUALITY VIA QUIVER HECKE ALGEBRAS

SEOK-JIN KANG

ABSTRACT. Let J be a set of pairs consisting of good $U'_q(\mathfrak{g})$ -modules and invertible elements in the base field $\mathbb{C}(q)$. The distribution of poles of normalized R-matrices yields Khovanov-Lauda-Rouquier algebras $R^J(\beta)$ for each $\beta \in Q^+$. We define a functor \mathcal{F}_β from the category of graded $R^J(\beta)$ -modules to the category of $U'_q(\mathfrak{g})$ -modules. The functor $\mathcal{F} = \bigoplus_{\beta \in Q^+} \mathcal{F}_\beta$ sends convolution products of finite-dimensional graded $R^J(\beta)$ modules to tensor products of finite-dimensional $U'_q(\mathfrak{g})$ -modules. It is exact if R^J is of finite type A, D, E. If $V(\varpi_1)$ is the fundamental representation of $U'_q(\widehat{\mathfrak{sl}}_N)$ of weight ϖ_1 and $J = \{(V(\varpi_1), q^{2i}) \mid i \in \mathbb{Z}\}$, then R^J is the Khovanov-Lauda-Rouquier algebra of type A_∞ . The corresponding functor \mathcal{F} sends a finite-dimensional graded R^J -module to a module in \mathcal{C}_J , where \mathcal{C}_J is the category of finite-dimensional integrable $U'_q(\widehat{\mathfrak{sl}}_N)$ -modules M such that every composition factor of M appears as a composition factor of a tensor product of modules of the form $V(\varpi_1)_{q^{2s}}$ ($s \in \mathbb{Z}$). Focusing on this case, we obtain an abelian rigid graded tensor category \mathcal{T}_J by localizing the category of finite-dimensional graded R^J -modules. The functor \mathcal{F} factors through \mathcal{T}_J . Moreover, the Grothendieck ring of the category \mathcal{C}_J is isomorphic to the Grothendieck ring of \mathcal{T}_J at q = 1.

Joeun Mathematical Research Institute, 441 Yeoksam-ro, Gangnam-gu, Seoul 06196, Ko-rea

1

E-mail address: soccerkang@hotmail.com