Linear functionals, dual spaces, dual maps, reflexivity

3.1. Let $X = \mathbb{R}^2$ equipped with the norm $\|\cdot\|_p$, and let $X_0 = \{(x,0) : x \in \mathbb{R}\} \subset X$. Define a linear functional $f_0: X_0 \to \mathbb{R}$ by $f_0(x,0) = x$. We clearly have $\|f_0\| = 1$. Describe all "Hahn-Banach extensions" of f_0 , i.e., all linear functionals $f: X \to \mathbb{R}$ such that $f|_{X_0} = f_0$ and $\|f\| = 1$. (Consider all possible $p \in [1, +\infty]$.)

3.2. Does there exist $f \in L^2[0,1]$ such that $\int_0^1 f(t)g(t) dt = g(0)$ (a) for every polynomial g of degree $\leq n$; (b) for every polynomial g?

3.3. Let X be a normed space, and let $X_0 \subset X$ be a closed vector subspace. Show that for each $h \in X \setminus X_0$ there exists $f \in X^*$ such that ||f|| = 1, $f|_{X_0} = 0$, and $f(h) = \text{dist}(h, X_0)$.

3.4. Construct isometric isomorphisms (a) $\ell^{\infty} \xrightarrow{\sim} (\ell^1)^*$; (b) $\ell^1 \xrightarrow{\sim} (c_0)^*$; (c) $\ell^q \xrightarrow{\sim} (\ell^p)^*$, where $1 < p, q < +\infty, 1/p + 1/q = 1$. Does this approach give an isometric isomorphism $\ell^1 \cong (\ell^{\infty})^*$?

3.5-B. Prove that c_0 is not topologically isomorphic to the dual of a normed space.

3.6-B. Let (X, μ) be a σ -finite measure space. Construct isometric isomorphisms (a) $L^{\infty}(X, \mu) \xrightarrow{\sim} (L^1(X, \mu))^*$; (b) $L^p(X, \mu) \xrightarrow{\sim} (L^q(X, \mu))^*$, where $1 < p, q < +\infty, 1/p + 1/q = 1$. *Hint.* To prove the surjectivity of the above maps, apply the Radon-Nikodym theorem.

3.7. Prove that for every infinite-dimensional normed space X there exists an unbounded linear functional on X.

Hint: use the fact that each vector space has an algebraic basis (i.e., a maximal linearly independent set).

3.8. Show that a normed space X is separable iff there exists a dense vector subspace $X_0 \subset X$ of an at most countable dimension.

3.9. Prove that the dimension of an infinite-dimensional Banach space is uncountable.

3.10. Show that c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ $(p < \infty)$ are separable, while ℓ^{∞} , $C_b(\mathbb{R})$, $L^{\infty}[a,b]$, $L^{\infty}(\mathbb{R})$ are not separable.

3.11. (a) Prove that every normed space X can be isometrically embedded into $\ell^{\infty}(S)$ for some S. (b) Prove that every separable normed space X can be isometrically embedded into ℓ^{∞} .

3.12. Let X be a normed space.

- (a) Prove that if X^* is separable, then so is X.
- (b) Is the converse true?
- (c) Prove that there is no topological isomorphism between $(\ell^{\infty})^*$ and ℓ^1 .

3.13. Prove that

- (a) a Hilbert space is reflexive;
- (b) c_0 is not reflexive;
- (c) ℓ^1 is not reflexive;
- (d) $L^1(X,\mu)$ is not reflexive (unless it is finite-dimensional);
- (e) C[a, b] is not reflexive.

3.14 (the dual map). Let X and Y be normed spaces, and let $T: X \to Y$ be a bounded linear map. Define $T^*: Y^* \to X^*$ by $T(f) = f \circ T$. Show that T^* is bounded, and that $||T^*|| = ||T||$.

3.15. Describe explicitly the duals of the following operators:

(a) the diagonal operator on ℓ^p (where $1 \leq p < \infty$) or on c_0 (see Exercise 2.10);

(b) the left shift operator T_{ℓ} and the right shift operator T_r acting on ℓ^p (where $1 \leq p < \infty$) or on c_0 by the rules

 $T_{\ell}(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \qquad T_r(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots);$

(c) the bilateral shift operator acting on $\ell^p(\mathbb{Z})$ (where $1 \leq p < \infty$) or on $c_0(\mathbb{Z})$ by the rule $T(x)_i = x_{i-1}$ ($i \in \mathbb{Z}$);

(d) the "antiderivative" operator on $L^p[0,1]$, $1 \leq p < \infty$ (see Exercise 2.11);

(e) the Hilbert-Schmidt integral operator on $L^2(X, \mu)$ (see Exercise 2.13).

3.16. Let X be a normed space, and let $i_X \colon X \to X^{**}$ be the canonical embedding. Prove that for each operator $T \in \mathscr{B}(X, Y)$ the following diagram commutes.

3.17. Let X and Y be Banach spaces, and let $T: X \to Y$ be a bounded linear map. Show that T is a topological (respectively, isometric) isomorphism iff $T^*: Y^* \to X^*$ is a topological (respectively, isometric) isomorphism.

3.18. Let X be a normed space, and let $i_X : X \to X^{**}$ be the canonical embedding. Find a relation between the operators $i_{X^*} : X^* \to X^{***}$ and $i_X^* : X^{***} \to X^*$.

3.19. (a) Prove that a Banach space X is reflexive iff X^* is reflexive.

(b) Deduce that ℓ^1 , ℓ^{∞} , $L^{\infty}[a, b]$ are not reflexive.