Введение в топологию (Гладкие многообразия). Листок 2.

 $3adaчa\ 1$. Наделим пространство \mathbb{R}^n наделим стандартным координатным скалярным произведением, $\langle (a_1,...,a_n),(b_1,...,b_n)\rangle = \sum a_ib_i$. Пусть A – симметрический оператор в \mathbb{R}^n . Рассмотрим функцию $\langle Ax,x\rangle$ на единичной сфере. Докажите, что ее критические точки это собственные векторы оператора A.

 $3a\partial a$ ча 2. Критическая точка z функции f называется невырожденной, если матрица $(\frac{\partial^2 f}{\partial x_i \partial x_j}(z))$ невырождена. Проверьте, что это условие не зависит от выбора системы координат в окрестности точки z.

Задача 3. Выясните, когда критические точки функции из первой задачи невырожленны.

Пусть M – компактное подмногообразие в \mathbb{R}^N , имеющее размерность k. S^{N-1} – единичная сфера. Рассмотрим подмножество L в $S^{N-1} \times M$, состоящее из всех пар (v,x), таких что (направление вектора) v ортогонален T_xM .

 $\it 3adaчa$ 4. Докажите, что $\it L$ является подмногообразием в $\it S^{N-1} \times \it M$. Найдите его размерность.

 $3a\partial a va$ 5. Рассмотрим ограничение естественной проекции $S^{N-1} \times M \to S^{N-1}$ (забывание второго аргумента) на L. Докажите, что v является регулярным значением этого отображения, если ограничение функции $\langle v, x \rangle$ на L является функцией Морса (т.е. функцией, все критические точки которой невырождены). Верно ли обратное? Докажите, что на M есть функции Морса.