GALOIS THEORY. HW3. (DUE DECEMBER, 13)

1. (a) Let F be a field of characteristic p and let K be a cyclic extension of F of degree p. Prove that $K=F(\alpha)$, where α is a root of the polynomial $x^{p}-x-a$ for some $a \in F$.
(b) Prove that every field F of positive characteristic such that the algebraic closure \bar{F} is of finite degree over F is algebraically closed.
2. (a) Suppose $F \subset K \subset \bar{F}$ is a finite Galois extension and $F \subset L \subset \bar{F}$ is any finite extension. Then

$$
[K L: F]=\frac{[K: F][L: F]}{[K \cap L: F]} .
$$

Here $K L \subset \bar{F}$ is the smallest subfield which contains K and L.
(b) Suppose $F \subset K \subset \bar{F}, F \subset L \subset \bar{F}$ are finite Galois extensions. Prove that $\operatorname{Gal}(K L / F)$ is isomorphic to the subgroup of the direct product $\operatorname{Gal}(K / F) \times$ $G a l(L / F)$ consisting of elements whose restrictions to the intersection $K \cap L$ are equal.
3. Prove that the Galois group of $x^{6}+24 x-20$ over \mathbb{Q} is A_{6}.
4. (a) Given any monic polynomial $P(x) \in \mathbb{Z}[x]$ of degree at least one show that there are infinitely many distinct prime divisors of the integers $P(1), P(2), P(3), P(4), \cdots$. (Hint: Suppose the only primes dividing the values $P(n)$, $n=1,2, \cdots$, are the primes $p_{1}, \cdots p_{k}$. Let N be an integer with $P(N)=a \neq 0$. Show that $Q(x)=a^{-1} P\left(N+a p_{1} \cdots p_{k} x\right)$ is an element of $\mathbb{Z}[x]$ and that $Q(n) \equiv 1($ $\left.\bmod p_{1} \cdots p_{k}\right), n=1,2, \cdots$.)
(b) Applying (a) to the cyclotomic polynomial show that there are infinitely many primes p with $p \equiv 1(\bmod m)$.

