Number Theory. Problem Set II .

0. Prove that every unique factorization Notherian domain of dimension 1 is a principal ideal domain.
1. Prove that every unit in the ring $\mathbb{Z}[\sqrt[3]{2}]$ has the form $\pm(1-\sqrt[3]{2})^{k}, k \in \mathbb{Z}$.
2. Find a system of generators for the group of units in $\mathbb{Z}[\sqrt{19}]$.
3. Find all integral solutions to the equation $3 x^{2}-4 y^{2}=11$.
4. Let $d>0$ be an integer. Assume that d is not a complete square. Prove that there is a rational number $\frac{x}{y}$ such that

$$
\left|\sqrt{d}-\frac{x}{y}\right|<\frac{1}{2 y^{2}}
$$

(Hint: Use the Dirichlet Units Theorem.)
5. Let $f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a polynomial with integer coefficients, $\alpha_{i} \in \mathbb{C},(1 \leq i \leq n)$, all the roots of $f(x)$. Assume that, for every i, we have

$$
\left|\alpha_{i}\right|=1
$$

Prove that each α_{i} is a root of 1 .
6. Let K be a field of characteristic not equal to $2, a, b \in K^{*}$. By definition, the algebra $H_{a, b}(K)$ of generalized quaternions is an algebra over K generated by elements i, j subject ot the relations $i j=-j i, i^{2}=a, j^{2}=b$. Set $k:=i j$.
(a) Prove that $N(x+y i+z j+t k)=\left(x^{2}-a y^{2}-b z^{2}+a b t^{2}\right)^{2}$.
(b) Prove, that $H_{a, b}(K)$ is either a division algebra or the matrix algebra $M a t_{2}(K)$.
(c) Prove that $H_{a, b}(K) \xrightarrow{\sim} M a t_{2}(K)$ if and only if the equation $x^{2}-a y^{2}-b z^{2}=0$ has a nonzero solution in K.
7. Let $A \subset H_{-1,-1}(\mathbb{Q}) i$ and $j: A=\mathbb{Z}+i \mathbb{Z}+j \mathbb{Z}+k \mathbb{Z}$.
(a) Prove that $|C l(A)|=2$.
(b) Prove that for every left ideal $0 \neq I \subset A$ the cardinality of A / I is either a complete square or has the form $2 n^{2}, n \in \mathbb{Z}$.
Moreover, if $|A / I|$ is a complete square if and only if I is a principal ideal.
(c) Prove that, for every prime $p \neq 2$, one has

$$
A / p A \xrightarrow{\sim} \operatorname{Mat}_{2}\left(\mathbb{F}_{p}\right) .
$$

(d) Prove that for every prime p there exists an ideal $I \subset A$ with $|A / I|=p^{2}$. How many such ideals are there? (Hint: what are the left ideals $M a t_{2}\left(\mathbb{F}_{p}\right)$?)
(e) Prove that every positive integer n can be written in the form $x^{2}+y^{2}+z^{2}+t^{2}$. Moreover, show that the number of such presentations is equal to $8 \sum_{d \mid n, d>0} d$ if n is odd and to $24 \sum_{\substack{m \mid n \\ m \text { odd }}} d$ otherwise.
8. Compute the class group of the ring $\mathbb{Z}[\sqrt{-5}]$.
9. What are the prime numbers which can be written in the form $x^{2}+5 y^{2}(x, y \in$ $\mathbb{Z})$? What are the integers which can be written in this form?
10. An order $A \subset D$ in a division algebra over \mathbb{Q} is said to be maximal if D has no strictly larger order. Note, that if A is a maximal order and $0 \neq a \in D$, then $a A a^{-1}$
is also a maximal order.
(a) Prove that maximal orders exist.
(b) Construct a maximal order in $H_{-1,-1}(\mathbb{Q})$ and compute the class set of this order.
(c)* Show that the number of maximal orders in any division algebra over \mathbb{Q} modulo conjugation is finite. (Hint: show that this number is less or equal to the cardinality of a class set of a maximal order.)

