
Number Theory. Problem set III .
Due date: December, 26, 2017.

1. (a) Let K ⊃ Q be a �nite extension, OK ⊂ K the maximal order, r2 the number
of complex (not real) embeddings K ↪→ C up to complex conjugation, KR := K⊗QR.
Prove that

V ol(KR/OK) = 2−r2
√
Disc(K/Q).

Here Disc(K/Q) stands for the discriminant of the extension. (Note, the R-algebra
KR is isomorphic to Rr1 ×Cr2 and that the induced from Rr1 ×Cr2 volume form does
not depend on the choice of this isomorphism. Therefore the expression V ol(KR/OK)
makes sense.)
(b) Prove that every �nite extension K ⊃ Q of degree greater than 1 is rami�ed at
least over one prime. 1 (Hint: Use the Minkowski Lemma and part (à).)

2. Let p > 2 be a prime number, µp a p-th primitive root of 1 in C.
(a) Show Z[µp] ⊂ Q(µp) is the maximal order and that the extension Q(µp) ⊃ Q is
unrami�ed except over prime p.
(b) For each l 6= p compute the Frobenius element Fl ∈ Gal(Q(µp)/Q)

∼−→ (Z/p)∗.
3. (à) Let f(x) be a monic polynomial of degree n with integral coe�cients which

has no multiple complex roots, D the discriminant of f(x), and let K ⊃ Q be the
splitting �eld of f(x). The Galois group Gal(K/Q) acts on the set of roots of f(x)
and this action de�nes an embedding Gal(K/Q) ⊂ Sn.
(a) Show that if p does not divide D then K is unrami�ed over p.
(b) Assume that p does not divide D. Let f(x) = f1(x) · · · f l(x) be the factorization
of the reduction of f(x) modulo p into a product of irreducible polynomials. Let di
be the degree of f i(x). Prove the cycle type of the Frobenius element Fp regarded as
a conjugacy class in Sn is (d1, · · · , dl).

4. Let f(x) be a polynomial with integral coe�cients.
(a) Prove that there are in�nitely many primes p such that the reduction of f(x)
modulo p splits into a product of linear factors.
(b) Assume that for all but �nitely many primes p the reduction of f(x) modulo p
splits into a product of linear factors. Prove that f(x) splits into a product of linear
factors in Q[x].
Remark: The assertions from parts (à) and (b) follow readily from Chebotarev's density
theorem and Problem 3. However, I invite you to give a direct proof using the following
result from the lectures: for any �nite extension Q ⊂ K the limit (s−1)ζK(s) as s→ 1
exists and does not equal to 0.)
(c) Assume that for all but �nitely many primes p the reduction of f(x) modulo p
has a zero in Fp. Prove that f(x) is reducible.
(d) Prove, that the polynomial f(x) = (x2 − 3)(x2 − 5)(x2 − 15) has a zero in Fp for
every prime p but does not have rational zeros.

1Using the language of algebraic geometry this assertion means that specZ is simply connected.
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5. (à) Let 1 6= ε ∈ C∗ be a n-th root of 1. Compute the sum
∞∑
n=1

εn

n
.

(b) Let f : G = Z/nZ→ C be a function , f̂ : Ĝ ' Z/nZ→ C its Fourier transform.
Assume that

∑
m∈Z/nZ f(m) = 0. Prove that the series

∞∑
n=1

f(n)

n

is convergent and �nd its sum.
(c) Compute

∞∑
n=1

(
1

4n
− 1

4n+ 1
).

6. Let p be a prime of the form 4k + 3, K = Q(
√
−p), and χ : (Z/pZ)∗ → C∗

Legendre symbol χ(m) = (m/p).
(a) Prove that

ζK(s) = ζ(s)L(s, χ).

(b) Prove that if, in addition, p 6= 3, then

L(1, χ) = − π

p
√
p

p−1∑
m=1

χ(m)m.

(When solving this problem you may use the following fact. Let ε = cos 2πp + isin 2π
p

and

G =

p−1∑
m=1

χ(m)εm

be the Gauss sum. Gauss proved that G = i
√
p, where

√
p is the positive root. (We

computed G up to sign on the 2-nd lecture.)
(c) Let hK be the class number of K, V the number of quadratic residues modulo
p on the interval (0, p/2), N the number of nonresidues on the same interval. Prove
that if p ≡ 7 (mod 8), then

hK = V −N,
and if p ≡ 3 (mod 8) and p 6= 3, then

hK =
1

3
(V −N).


