Affine Lie algebras and applications
 Exam

due 22.12.2017

1. Prove that for a GCM A one has the following inequalities for the multiplicities $\operatorname{mult}(\alpha)=\operatorname{dim} L(A)_{\alpha}$:

$$
\operatorname{mult}\left(2\left(\alpha_{i}+\alpha_{j}\right)\right) \leq 1, \operatorname{mult}\left(\alpha_{i}+s \alpha_{j}\right) \leq 1
$$

2. Let $A=\left(\begin{array}{cc}2 & -3 \\ -3 & 2\end{array}\right)$. Prove that mult $\left(2 \alpha_{1}+3 \alpha_{2}\right)=2$.
3. Prove that for a 2×2-GCM A one has mult $\left(2 \alpha_{1}+3 \alpha_{2}\right) \leq 2$. Find out when mult $\left(2 \alpha_{1}+3 \alpha_{2}\right)=2$.
4. Find all reflections for the action of the affine Weyl group of type \tilde{A}_{2} (corresponding to the GCM $\left(\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right)$) on the two dimensional Cartan subalgebra of $\mathfrak{s l}_{3}$. Draw the walls (lines) of these reflections.
5. Find all real roots for the affine Kac-Moody Lie algebra with GCM given by

$$
A=\left(\begin{array}{cc}
2 & -4 \\
-1 & 2
\end{array}\right)
$$

6. Let A be a GCM of finite or affine type. Prove that for a root β and a real root α the string $\{\beta+k \alpha, k \in \mathbb{Z}\}$ contains at most five roots. Prove that the length of strings in indefinite type is unbounded.
