Distributions

4.1. Show that (a) the Dirac δ -function is not regular; (b) the derivative of the δ -function is not given by any Radon measure on \mathbb{R} .

4.2. (a) Show that the rule

$$f(\varphi) = \left(\mathscr{P}\frac{1}{x}\right)(\varphi) = \text{v.p.} \int_{\mathbb{R}} \frac{\varphi(x)}{x} dx$$

determines a distribution f on \mathbb{R} .

(b) Show that f is not given by a Radon measure on \mathbb{R} .

4.3. Show that (a) $\varphi \delta_{x_0} = \varphi(x_0) \delta_{x_0}$ for all tempered $\varphi \in C^{\infty}(\mathbb{R})$ (where $\delta_{x_0} = \delta(x - x_0)$ is the Dirac δ -function at x_0 given by $\delta_{x_0}(\psi) = \psi(x_0)$); (b) $x \mathscr{P}(1/x) = 1$ (where x is the coordinate, i.e., the identity map of \mathbb{R}).

4.4. Let f ∈ S'(ℝ) and φ ∈ S(ℝ).
(a) Does φf = 0 imply that f(φ) = 0?
(b) Does f(φ) = 0 imply that φf = 0?

4.5. Let $x_0 \in \mathbb{R}$, and let φ be a smooth tempered function on \mathbb{R} . By Exercise 4.3, $\varphi \delta_{x_0} = 0$ iff $\varphi(x_0) = 0$. Find a condition on φ that is necessary and sufficient for $\varphi \delta'_{x_0} = 0$.

4.6. Let φ be a tempered smooth function on \mathbb{R} , and let $f \in \mathscr{S}'(\mathbb{R})$. Show that $(\varphi f)' = \varphi' f + \varphi f'$.

4.7. Let $f: \mathbb{R} \to \mathbb{R}$ be a piecewise C^1 -function such that both f and the classical derivative f'_{class} of f (which is defined almost everywhere) are polynomially bounded. Let $\{x_k\}$ be the set of points at which f is discontinuous. Show that $f' = f'_{\text{class}} + \sum_k a_k \delta_{x_k}$, where a_k is the "jump" of f at x_k .

4.8. Construct a continuous and a.e. differentiable function on \mathbb{R} whose classical derivative is not equal to the distributional derivative.

4.9. Calculate the following distributional derivatives: (a) (|x+1|+|x-1|)''; (b) $(\ln |x|)'$; (c) $|\sin x|''$.

4.10. Find all $f \in \mathscr{S}'(\mathbb{R})$ satisfying the following equations: (a) f' = 0; (b) xf = 0 (where x is the coordinate on \mathbb{R}); (c) $x^2f = 0$.

4.11. (a) Find the Fourier expansion of $f(x) = x/2 - x^2/4\pi$ on the interval $[0, 2\pi]$ w.r.t. the trigonometric basis e^{inx} $(n \in \mathbb{Z})$.

(b) (the Poisson summation formula). Prove the equality $\sum_{n \in \mathbb{Z}} e^{inx} = 2\pi \sum_{n \in \mathbb{Z}} \delta(x - 2\pi n)$ in $\mathscr{S}'(\mathbb{R})$.