Семинар 6. Билинейные и квадратичные формы

Задача 1. Пусть V - векторное пространство над полем ${\bf k}$. Докажите, что множество $L_2(V)$ билинейных форм на V является векторным пространством над ${\bf k}$ относительно операций сложения форм и умножения форм на скаляры, определяемых поточечно (то есть для любых $x,y\in V$) следующим образом:

 $(f_1 + f_2)(x, y) := f_1(x, y) + f_2(x, y), \quad f_1, f_2 \in L_2(V),$ $(\alpha f)(x, y) := \alpha f(x, y), \quad f \in L_2(V), \quad \forall \alpha \in \mathbf{k}.$

- **Задача 2.** Назовем билинейную форму f симметрической (соответственно, кососимметрической), если для любых $x, y \in V$ имеем f(x, y) = f(y, x) (соответственно, f(x, y) = -f(y, x)).
- а) Докажите, что множество $L_2(V)_s$ всех симметрических (соответственно, множество $L_2(V)_a$ всех кососимметрических) билинейных форм в V является векторным подпространством в $L_2(V)$.
- б) Пусть $\dim_{\mathbf{k}} V = n$. Найдите размерности пространств $L_2(V)$ и $L_2(V)_s$. (Указание. Воспользуйтесь доказанным на лекциях фактом, что всякая билинейная форма однозначно определяется своей матрицей в некотором базисе.)
- в) Пусть char $\mathbf{k} \neq 2$. Найдите размерность пространства $L_2(V)_a$ и докажите, что $L_2(V) = L_2(V)_s \oplus L_2(V)_a$.
- **Задача 3.** Пусть V конечномерно, и билинейная форма f на V задана своей матрицей A в некотором базисе (e) пространства V.
- а) Пусть новый базис (e') в V связан с базисом (e) посредством матрицы перехода X: (e') = (e)X. Выразите матрицу A' формы f в базисе (e') через A и X.
- б) Назовем paнгом rkf билинейной формы f ранг ее матрицы A в некотором базисе. Докажите, что это определение корректно, т.е. не зависит от выбора базиса в V.
- в) Назовем левым (соответственно, правым) ядром билинейной формы f подмножество $W_l = \{x \in V \mid f(x,y) = 0 \ \forall y \in V\}$ (соответственно, $W_r = \{y \in V \mid f(x,y) = 0 \ \forall x \in V\}$). Докажите, что W_l и W_r подпространства в V. Как связаны их размерности между собой и с рангом формы f?
- Задача 4. Квадратичной формой на векторном пространстве V над полем $\mathbf k$ называется такое отображение $F:V\to \mathbf k$, для которого существует билинейная форма f на V такая, что F(v)=f(v,v) для всех $v\in V$. Докажите, что если char $\mathbf k\neq 2$, то для всякой квадратичной формы F существует единственная симметрическая билинейная форма f со свойством $F(v)=f(v,v),\ v\in V$. (Она называется поляризацией формы F.)

Задача 5.

- а) Докажите, что если билинейная форма f на V обладает свойством f(v,v)=0 для всех $v\in V$, то она кососимметрична.
- б) Докажите, что если $\operatorname{char} \mathbf{k} \neq 2$, то ранг любой кососимметрической билинейной формы четен.

Дополнительные задачи к семинару 6

- **Задача 1.** Пусть A матрица билинейной формы f в данном базисе (e) пространства V, и V^* двойственное к V пространство. Рассмотрим отображение $\tilde{f}: V \to V^*, \ x \mapsto (y \mapsto f(x,y))$.
- а) Докажите, что \tilde{f} линейное отображение. Как по матрице A найти ранг отображения \tilde{f} ?
- б) Пусть (e^*) базис пространства V^* , двойственный к базису (e). Выразите матрицу отображения \tilde{f} в базисах (e) и (e^*) через матрицу A.
- Задача 2. Матрицей A квадратичной формы F в данном базисе (e) пространства V называется матрица ее поляризации билинейной формы в этом базисе. Пусть $\mathbf{k} = \mathbb{R}$, и базис (e) в V выбран так, что матрица A квадратичной формы F диагональна. Обозначим через r_+ , r_- и r_0 соответственно число положительных, отрицательных и нулевых диагональных элементов матрицы A. Докажите, что тройка чисел (r_+, r_-, r_0) не зависит от выбора базиса (e) (она называется cushamypoù квадратичной формы F).
- Задача 3. Вектор $x \in V$ называется ортогональным вектору $y \in V$ относительно билинейной формы f на V, если f(x,y)=0. Пусть f такая билинейная форма, что условие ортогональности векторов относительно f симметрично, то есть из f(x,y)=0 следует f(y,x)=0. Докажите, что тогда f либо симметрична, либо кососиметрична.
- **Задача 4.** Пусть char $\mathbf{k} \neq 2$, и $A \in M(2r, \mathbf{k})$ невырожденная кососимметрическая матрица. Докажите, что существует единственный (с точностью до знака) многочлен $\mathrm{Pf}A$ от коэффициентов матрицы A такой, что $\det A = (\mathrm{Pf}A)^2$. (Этот многочлен называется $n \phi a \phi \phi u a ho m matpuцы <math>A$.)
- Задача 5. Пусть chark $\neq 2$. Докажите, что если dim V=n и f кососимметрическая форма ранга 2r, то в V существует базис $e_1,e_2,...,e_{2i-1},e_{2i},...,e_{2r-1},e_{2r},e_{2r+1},...,e_n$ такой, что $f(e_{2i-1},e_{2i})=-f(e_{2i},e_{2i-1})=1,\quad i=1,...,r,$ и $f(e_i,e_j)=0$ для всех других пар базисных векторов e_i,e_j . (Этот базис называется симплектическим.)

Дополнительные задачи к семинару 6

- **Задача 1.** Пусть A матрица билинейной формы f в данном базисе (e) пространства V, и V^* двойственное к V пространство. Рассмотрим отображение $\tilde{f}: V \to V^*, \ x \mapsto (y \mapsto f(x,y))$.
- а) Докажите, что \tilde{f} линейное отображение. Как по матрице A найти ранг отображения \tilde{f} ?
- б) Пусть (e^*) базис пространства V^* , двойственный к базису (e). Выразите матрицу отображения \tilde{f} в базисах (e) и (e^*) через матрицу A.
- Задача 2. Матрицей A квадратичной формы F в данном базисе (e) пространства V называется матрица ее поляризации билинейной формы в этом базисе. Пусть $\mathbf{k} = \mathbb{R}$, и базис (e) в V выбран так, что матрица A квадратичной формы F диагональна. Обозначим через r_+ , r_- и r_0 соответственно число положительных, отрицательных и нулевых диагональных элементов матрицы A. Докажите, что тройка чисел (r_+, r_-, r_0) не зависит от выбора базиса (e) (она называется curnamypoй квадратичной формы F).
- Задача 3. Вектор $x \in V$ называется ортогональным вектору $y \in V$ относительно билинейной формы f на V, если f(x,y)=0. Пусть f такая билинейная форма, что условие ортогональности векторов относительно f симметрично, то есть из f(x,y)=0 следует f(y,x)=0. Докажите, что тогда f либо симметрична, либо кососиметрична.
- Задача 4. Пусть char $\mathbf{k} \neq 2$, и $A \in M(2r, \mathbf{k})$ невырожденная кососимметрическая матрица. Докажите, что существует единственный (с точностью до знака) многочлен $\mathrm{Pf}A$ от коэффициентов матрицы A такой, что $\det A = (\mathrm{Pf}A)^2$. (Этот многочлен называется $n \phi a \phi \phi u a ho m$ матрицы A.)
- Задача 5. Пусть char $\mathbf{k} \neq 2$. Докажите, что если dim V=n и f кососимметрическая форма ранга 2r, то в V существует базис $e_1,e_2,...,e_{2i-1},e_{2i},...,e_{2r-1},e_{2r},e_{2r+1},...,e_n$ такой, что $f(e_{2i-1},e_{2i})=-f(e_{2i},e_{2i-1})=1,\quad i=1,...,r,$ и $f(e_i,e_j)=0$ для всех других пар базисных векторов e_i,e_j . (Этот базис называется cимплектическим.)