21 задача контрольной работы.

- 1. Доказать, что всякая прямая на поверхности является геодезической.
- 2. Доказать, что меридианы поверхности вращения являются геодезическими кривыми.
- 3. Привести пример поверхности, через любые две точки которой проходит бесконечно много геодезических.
- 4. $\mathit{Kamehoud}$ образован вращением цепной линии $y = \operatorname{ch} x$ вокруг оси X. Найти гауссову кривизну катеноида.
- 5. Дифференциальное уравнение движения точечного электрического заряда в поле магнитного полюса имеет вид

$$r''(t) = c | r(t) |^{-3} (r(t) \times r(t)), c = const.$$

Доказать, что точка движется по геодезической на круглом конусе.

- 6. На плоскости задана метрика $ds^2 = f(u,v)(du^2 + dv^2)$. Доказать, что гауссову кривизну можно вычислить по формуле $K = -\frac{1}{2f}\triangle \ln f$, где $\triangle = \frac{\partial^2}{\partial v^2} + \frac{\partial^2}{\partial v^2}$ оператор Лапласа.
- 7. Поверхности с равной постоянной гауссовой кривизной локально изометричны. Доказать.
- 8. Лемма о симметрии, которой я точно пользовался.

Пусть M — гладкое многообразие с симметрической связностью ∇ и $\gamma(t,v)\colon [0,l]\times [-\varepsilon,\varepsilon]\to M$ — гладкое отображение (про такие говорят, что задана параметризованная поверхность на M). Доказать, что $\nabla_{\frac{\partial \gamma}{\partial t}} \frac{\partial \gamma}{\partial v} = \nabla_{\frac{\partial \gamma}{\partial v}} \frac{\partial \gamma}{\partial t}$ (в обозначениях лекции $\nabla_T V = \nabla_V T$).

- 9. Пусть $\gamma(t,v)\colon [0,l]\times [-\varepsilon,\varepsilon]\to M$ такая параметризованная поверхность, что для любого $t_0\in [0,l]$ кривая $v\to \gamma(t_0,v),\ v\in [-\varepsilon,\varepsilon]$, есть натурально параметризованная геодезическая, ортогональная кривой $\gamma(t,0)$ в точке $\gamma(t_0,0)$. Доказать, что для любой точки (t_0,v_0) кривая $\gamma(t_0,v)$ ортогональна кривой $\gamma(t,v_0)$.
- 10. Пусть M риманова поверхность, $p \in M$, $V \subset T_pM$ окрестность начала координат, в которой экспоненциальное отображение $Exp_p \colon T_pM \to M$ является диффеоморфизмом, $S_r(0) \subset V$ шар радиуса r с центром в т.0 $\in T_pM$, L_r длина $Exp(S_r(0))$ в M. Доказать, что $K(p) = \lim_{r \to 0} \frac{3}{\pi} \frac{2\pi r L_r}{r^3}$.

Указание: можно использовать полярную систему координат.

11. Определим вложение тора $\mathbb{T}^2 = S^1 \times S^1, \ (\theta, \varphi) \in [0, 2\pi] \times [0, 2\pi],$ в сферу единичного радиуса $S^3 \subset E^4$:

$$(\theta, \varphi) \to \frac{1}{\sqrt{2}}(\cos \theta, \sin \theta, \cos \varphi, \sin \varphi).$$

Показать, что вложенный таким образом тор имеет нулевую гауссову кривизну в индуцированной метрике.

- 12. Пусть M^n гиперповерхность в E^{n+1} , с единичным полем нормалей n. Пусть $m \in M, v \in T_m M, \gamma \colon [a,b] \to M, \gamma(a) = m, \dot{\gamma}(a) = v$. Доказать, что $(\ddot{\gamma}(a),n) = (L_p(v),v)$, где L_p оператор формы.
- 13. Пусть $\gamma\colon [a,b]\to E^3$ гладкая кривая с единичной скоростью в E^3 . Предположим, что $\dot{\gamma}(t)\times \ddot{\gamma}(t)\neq 0$ (векторное произведение $\neq 0$) для всех $t\in [a,b]$. Рассмотрим векторные поля $T=\dot{\gamma}(t),\ N=\frac{\ddot{\gamma}}{||\ddot{\gamma}||}$ и $B=T\times N$. Докажите, что
 - а) T, N, B ортонормальный базис при любом $t \in [a, b]$.
 - б) $\dot{T} = \varkappa N$,

 $\dot{N} = -\varkappa T + \tau B$ (формулы Френе),

 $\dot{B} = -\tau N$ для некоторых гладких функций $\varkappa, \tau \colon [a,b] \to \mathbb{R}$.

 $(\varkappa$ и τ называются кривизной и кручением кривой γ).

- 14. Напишите и докажите формулы Френе для плоской кривой.
- 15. Докажите, что кривизна из формул Френе для плоской кривой совпадает с кривизной, которая определяется с помощью оператора формы.
- 16. Тютик Задунайский утверждает, что $\nabla_Y[X,Y] = [\nabla_Y X,Z] + [X,\nabla_Y Z]$ для трех векторных полей X,Y,Z на многообразии. Я сомневаюсь. Рассудите нас.
- 17. Пусть ω некоторая 1—форма на многообразии M. Докажите, что для любых X и $Y \in Vect M$ имеем

$$2(d\omega)(X,Y) = L_X\omega(Y) - L_Y\omega(X) - \omega([X,Y]),$$

где L_X — производная Ли, d — внешнее дифференцирование.

- 18. Вычислить геодезическую кривизну орицикла на плоскости Лобачевского (кривизна которой K=-1).
- 19. Рассмотрим в \mathbb{R}^3 гиперболические координаты (r, θ, φ) :

$$x = r\cos\theta \operatorname{sh}\varphi, \ y = r\sin\theta \operatorname{sh}\varphi, \ z = r\operatorname{ch}\varphi.$$

- а) Нарисуйте поверхность r = 1.
- б) Найдите все точки $(x, y, z) \in \mathbb{R}^3$, в окрестности которых (r, θ, φ) служат координатами.
- в) Найдите в локальных координатах (θ, φ) метрику на поверхности M: r=1, индуцированную стандартной метрикой в E^3 .
- г) Выразите координатные векторные поля $\frac{\partial}{\partial r}$, $\frac{\partial}{\partial \theta}$, $\frac{\partial}{\partial \varphi}$ через $\frac{\partial}{\partial x}$, $\frac{\partial}{\partial y}$, $\frac{\partial}{\partial z}$.
- д) Вычислите символы Кристоффеля связности Леви–Чивита на M.
- 20. Докажите, что гауссова кривизна поверхности

$$ax^2+by^2-z=0$$
равна $K=\frac{4ab}{(4a^2x^2+4b^2y^2+1)^2}.$

21. Пусть (t, v) — семейство геодезических, зависящее от параметра v. Предположим, что $||\dot{\gamma}_t(t, v)||$ равно константе, которая не завист от v.

Доказать, что в таком случае и $||\dot{\gamma_v}(t,v)||$ равно константе, не зависящей от t (связность Леви-Чивита).