Laplace equation. Dirichlet problem
 List 5 (26.03.2018)

Deadline - 10-17.04.2017.

1. Write the Laplace operator in \mathbb{R}^{2} in polar coordinates (r, ϕ).
2. Using the result of the above problem
a) prove that for every $n \in \mathbb{Z}$ a function $f(r) \sin (n \phi)$ is harmonic, if and only if $f(r)=a r^{n}+b r^{-n}$, and the same statement holds with sin replaced by cos;
b) solve the Dirichlet problem $\Delta u=0,\left.u\right|_{\partial D_{1}}=u_{0}$ in the unit disk D_{1} with a given C^{2}-smooth function $u_{0}=u_{0}(\phi)$ on ∂D_{1} represented by a Fourier series

$$
u_{0}(\phi)=a_{0}+\sum_{k \geq 1}\left(a_{k} \sin (k \phi)+b_{k} \cos (k \phi)\right) .
$$

Represent the solution by a Fourier series in ϕ with coefficients depending on r.
3. Solve the Dirichlet problem $\Delta u=0,\left.u\right|_{\partial D_{1}}=u_{0}$ in the unit disk $D_{1} \subset \mathbb{R}^{2}$ with
a) $u_{0}(\phi)=\sin ^{2} \phi$,
b) $u_{0}(\phi)=\cos ^{3} \phi$,
c) $u_{0}(\phi)=\sin ^{3} \phi$.
4. Solve the Dirichlet problem $\Delta u=0,\left.u\right|_{\partial B_{1}}=u_{0}$ in the unit ball $B_{1} \subset \mathbb{R}^{3}$ with $u_{0}=\sin (n \phi)$, where $\phi=\phi(x, y, z)$ is the polar coordinate on the (x, y)-plane: it is the longitude identified with the projection of the point $\left.(x, y, z) \in \partial B_{1}\right)$ to the equator $\{z=0\} \cap \partial B_{1}$ along the meridians.
5. Prove that any two C^{2}-smooth functions f and g on the closure of a piecewise smooth bounded domain $\Omega \subset \mathbb{R}^{n}$ satisfy the identity

$$
\int_{\partial \Omega}\left(f(\zeta) \frac{\partial g}{\partial \vec{n}}(\zeta)-g(\zeta) \frac{\partial f}{\partial \vec{n}}(\zeta)\right) d s(\zeta)=\int_{\Omega}(f(\zeta) \Delta g(\zeta)-g(\zeta) \Delta f(\zeta)) d \zeta_{1} \ldots d \zeta_{n}
$$

Here \vec{n} is the field of exterior normal unit vectors on the boundary.
6. Prove the following equivalent definition of the Laplace operator Δ. For every $r>0, x \in \mathbb{R}^{n}$ and a function u on a neighborhood of the point x containing the closed r-ball centered at x let $S_{r, x}(u)$ denote its average value over the sphere of radius r centered at x. Then

$$
\Delta u(x)=\lim _{r \rightarrow 0} \frac{2 n}{r^{2}}\left(S_{r, x}(u)-u(x)\right)
$$

7. Prove that the limit of every uniformly converging sequence of harmonic functions is harmonic. A possible hint: use the Poisson formula.
8. Find the derivative in the sense of distributions of the following functions
a) $f(x)=|x|$;
b) $f(x)=0$ for $x<0$ and $f(x)=1$ for $x \geq 0$;
c) $f(x, y)=r=\sqrt{x^{2}+y^{2}}$.
9. a) Prove that every H_{1}-Sobolev function of one variable is continuous.
b) Prove that every piecewise smooth function of one variable is H_{1}-Sobolev.
10. Which ones of the following functions $f(x, y)$ are H_{1}-Sobolev:
a) the polar coordinate $\phi=\arg \frac{y}{x}$;
b) $\ln r$, where $r=\sqrt{x^{2}+y^{2}}$ is the polar coordinate;
c) $\ln (-\ln r)$?
