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1. Write the Laplace operator in R? in polar coordinates (r, ¢).

2. Using the result of the above problem

a) prove that for every n € Z a function f(r)sin(n¢) is harmonic, if and only if f(r) = ar™ 4+ br—",
and the same statement holds with sin replaced by cos;

b) solve the Dirichlet problem Au = 0, u|lpp, = up in the unit disk D; with a given C?-smooth
function ug = ug(¢) on 9D, represented by a Fourier series

uo(P) = ag + Z(ak sin(k¢) + by cos(ke)).

k>1

Represent the solution by a Fourier series in ¢ with coefficients depending on 7.

3. Solve the Dirichlet problem Au = 0, u|pp, = uo in the unit disk D; C R? with
) uo(4) = sin’ 6,
b) ug () = cos® ¢,
c) uo(¢) = sin’ ¢.

4. Solve the Dirichlet problem Au = 0, u|sp, = uo in the unit ball B; C R? with uy = sin(n¢), where
¢ = ¢(x,y, z) is the polar coordinate on the (z,y)-plane: it is the longitude identified with the projection
of the point (z,y, z) € 9B1) to the equator {z = 0} N dB; along the meridians.

5. Prove that any two C2-smooth functions f and g on the closure of a piecewise smooth bounded
domain 2 C R" satisfy the identity

of
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Here 77 is the field of exterior normal unit vectors on the boundary.

6. Prove the following equivalent definition of the Laplace operator A. For every r > 0, x € R™ and a
function u on a neighborhood of the point = containing the closed r-ball centered at x let .S, ;(u) denote
its average value over the sphere of radius r centered at x. Then

. 2n
Au(z) = lim — (Sy 2 (u) — u(x)).

r—0 r2

7. Prove that the limit of every uniformly converging sequence of harmonic functions is harmonic.
A possible hint: use the Poisson formula.

8. Find the derivative in the sense of distributions of the following functions

a) f(x) = |;
b) f(z) =0for x <0 and f(z) =1 for x > 0;

0) fle.y) =7 =/ o2,

9. a) Prove that every H;-Sobolev function of one variable is continuous.
b) Prove that every piecewise smooth function of one variable is Hi-Sobolev.

10. Which ones of the following functions f(z,y) are H;-Sobolev:
a) the polar coordinate ¢ = arg £;

b) Inr, where r = /22 4 y? is the polar coordinate;

¢) In(—Inr)?



