Laplace equation. Dirichlet problem List 5 (26.03.2018) Deadline - 10-17.04.2017.

1. Write the Laplace operator in \mathbb{R}^2 in polar coordinates (r, ϕ) .

2. Using the result of the above problem

a) prove that for every $n \in \mathbb{Z}$ a function $f(r)\sin(n\phi)$ is harmonic, if and only if $f(r) = ar^n + br^{-n}$, and the same statement holds with sin replaced by cos;

b) solve the Dirichlet problem $\Delta u = 0$, $u|_{\partial D_1} = u_0$ in the unit disk D_1 with a given C^2 -smooth function $u_0 = u_0(\phi)$ on ∂D_1 represented by a Fourier series

$$u_0(\phi) = a_0 + \sum_{k \ge 1} (a_k \sin(k\phi) + b_k \cos(k\phi)).$$

Represent the solution by a Fourier series in ϕ with coefficients depending on r.

- 3. Solve the Dirichlet problem $\Delta u = 0$, $u|_{\partial D_1} = u_0$ in the unit disk $D_1 \subset \mathbb{R}^2$ with
- a) $u_0(\phi) = \sin^2 \phi$,
- b) $u_0(\phi) = \cos^3 \phi$,
- c) $u_0(\phi) = \sin^3 \phi$.

4. Solve the Dirichlet problem $\Delta u = 0$, $u|_{\partial B_1} = u_0$ in the unit ball $B_1 \subset \mathbb{R}^3$ with $u_0 = \sin(n\phi)$, where $\phi = \phi(x, y, z)$ is the polar coordinate on the (x, y)-plane: it is the longitude identified with the projection of the point $(x, y, z) \in \partial B_1$ to the equator $\{z = 0\} \cap \partial B_1$ along the meridians.

5. Prove that any two C^2 -smooth functions f and g on the closure of a piecewise smooth bounded domain $\Omega \subset \mathbb{R}^n$ satisfy the identity

$$\int_{\partial\Omega} (f(\zeta)\frac{\partial g}{\partial \vec{n}}(\zeta) - g(\zeta)\frac{\partial f}{\partial \vec{n}}(\zeta))ds(\zeta) = \int_{\Omega} (f(\zeta)\Delta g(\zeta) - g(\zeta)\Delta f(\zeta))d\zeta_1 \dots d\zeta_n.$$

Here \vec{n} is the field of exterior normal unit vectors on the boundary.

6. Prove the following equivalent definition of the Laplace operator Δ . For every $r > 0, x \in \mathbb{R}^n$ and a function u on a neighborhood of the point x containing the closed r-ball centered at x let $S_{r,x}(u)$ denote its average value over the sphere of radius r centered at x. Then

$$\Delta u(x) = \lim_{r \to 0} \frac{2n}{r^2} (S_{r,x}(u) - u(x)).$$

7. Prove that the limit of every uniformly converging sequence of harmonic functions is harmonic. A possible hint: use the Poisson formula.

8. Find the derivative in the sense of distributions of the following functions

- a) f(x) = |x|;
- b) f(x) = 0 for x < 0 and f(x) = 1 for $x \ge 0$;
- c) $f(x,y) = r = \sqrt{x^2 + y^2}$.

9. a) Prove that every H_1 -Sobolev function of one variable is continuous.

b) Prove that every piecewise smooth function of one variable is H_1 -Sobolev.

10. Which ones of the following functions f(x, y) are H_1 -Sobolev:

a) the polar coordinate $\phi = \arg \frac{y}{x}$;

b) $\ln r$, where $r = \sqrt{x^2 + y^2}$ is the polar coordinate;

c) $\ln(-\ln r)$?