Elliptic Functions

Riemann surfaces of algebraic functions.



34.1 Riemann surface of algebraic functions.

Hitherto: elliptic integrals and elliptic functions (mainly) over R.

Let us complexify the theories!

Want: integrals of R(x,+/¢(x)) on C.
— A problem of multi-valuedness (branches) of \/¢(x) occurs.



The simplest case: +/z.

What is \/z? — “w which satisfies w? = 2".

Then /z cannot be uniquely determined: if w? = z, then (—w)? = 2.

Where does this “—" sign come from?
z=re" (r =|z|, 0 = arg z; polar form) = /z = \/re'?/2
o For r € Ry, v/ > 0 is uniquely determined.
e 0 =argzis NOT unique! arg z is determined only up to 27Z:
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Correspondingly,
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Two solutions to the multi-valuedness problem:

1. Restrict the range of arg (e.g., —m < arg z < 7).

— Not convenient, for example, to consider y/z on a curve around 0.

(cf. Figure.) The range is arbitrarily chosen.

argz=rm

argz=-7m

argz=-m /2

2. Double the domain of definition (Riemann’s idea):

Assign two “points” (z,4) and (z,—) to each z # 0.



D: “small” domain, 0 ¢ D. = D splits to D, and D_.

D
A
O

V) = el
VG = e,

z=re? (0 € (—m,7]) — {

How about z = 0? Since v/0 = 0 is unique, it should not be split.

Then what occurs with the whole plane C?
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Answer (by Riemann):

Glue (C~ {0})1 & (C~ {0})_ (= two copies of C ~. {0}) as follows:

////7/////1




Motion of z = re¥ (r > 0, ¢ € [0, 27]):
1. When ¢ < 7, z moves on the upper plane.
2. When ¢ exceeds 7, z transfers to the lower plane.
3. When ¢ = 27, 2z does not come back to the start!
=0 (2,+) ~ (2,—) <> ¢=2m
Correspondingly, when z = 7e¥(¢*9) (0 < 6 < 27) moves arround 0:

Vz = \Jret#/? y /z = —/ret¥/2.
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Summarising: +/z should be defined on
R := (C~A{0p)+ U {0}
Vet Jreie!?

R: Riemann surface of /z. ... quite “hand-made”.



e Systematic construction of the Riemann surface:

Points of R: (z,4) ~ (z,w = £1/z = +/re¥/?).

R :={(z,w) | F(z,w) := w® — z =0} C C°.

e 0 is naturally included in R as (0,0).
e R has natural topology as a subset of C2.

e R is a one-dimensional complex manifold.



e Review: manifold

X: real (C"-)manifold

e X: Hausdorff space.
° {(U)\,¢)\)})\EAZ atlas of X, i.e.,

Uy C X : open, UUA:X,
A€

oy : Uy — V) € RY - homeomorphism

o oo, (UxNU,) — dA(UxNUy): CT-diffeomorphism.

o &l
A % 2= %97 (2) \q.{
&Ug e /N

= 10 g




Complex manifold: R — C, C"-diffeomorphism — holomorphic bijection.

Theorem:

Assumptions:

e F(z,w): polynomial.

o | I 8F, or #+(0,0,0) on a domain U C C?.
0z Ow

Then {(z,w) | F(z,w) =0} NU is a one-dimensional complex manifold
(possibly non-connected). ]

Remark:

May assume that F'(z,w) is a holomorphic function in (z,w).

We use only the polynomial case.

11



Lemma: (Holomorphic implicit function theorem)

oF
F(z,w): as above. Assume F'(zg,wqg) = 0, 8_(Zo’w0) # 0.
w

Then,

e Jr,p > 0 such that

o)

is bijective.

|z — 20| < 7y |lw—wp| < p
F(z,w)=0

}9 (z,w) — z€{z||z—20] <71}

e the component ¢(z) of the inverse map z — (2, p(2)) is holomorphic.

[]

Obvious from the implicit function theorem in the real analysis?
... No. One has to prove that ¢(z) is holomorphic.
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Proof:
f(w) := F(z0,w): f(wg) =0, f'(wg) # 0 by assumption.

—> f has only one zero in a neighbourhood of wy:

. 1 f'(w)
(number of zeros in |w — wp| < p) = —j{ dw =1
PALY) |lw—wo|=p f(w)

for sufficiently small p.
In general, if |2 — zg| is so small that F'(z,w) # 0 on {w | |lw — wy| = p},

N(z) =#{w| F(z,w) =0, |[w—wy| < p} (= N(z) € Z)

1 9 (2, w . .
S o (7, ) dw. (= N(z) is continuous in z.)
2700 Jjwy—wwo|=p (2, W)

—> N(2): locally constant.
We know N(zp) =1. = N(z) =11if |z — z9| < r (r: small).
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This means that the projection

{0

Is bijective.

|z — 20| <7y |Jw—wp| < p
F(z,w)=0

}9(2,w)%z6{z\\z—z0<r}

2z (2,0(2)) : the inverse map, i.e., F'(z,p(2)) = 0.

Formula in Complex Analysis:

e g(w), ¥(w): holomorphic on a neighbourhood of {w | |w — wg| £ p},

e g(w) #0: on {w | lw —wo| = p},
Then
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Apply this formula to g(w) = F(z,w) and ¥(w) = w:

1 2L (=,
p(z) = —7{ o * w)wdw.
|w—wo|=p

- 2mi F(z,w)
Integrand depends on z holomorphically. = ¢(z): holomorphic. [
g—i(zo,wo) # 0 :>/\z a coordinate of R = {F'(z,w) = 0} near (zg,wp):
(Figure) zw=1()

®=(F(z,w)=0}
w= ('/.) (2) —

\

-

7 z=¢'(w)
OF

8_(Zo’wo) #+ 0 = w: a coordinate of R = {F(z,w) = 0} near (zg, wp).
2

N\
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OF oOF
— (20, wp) # 0 and — (20, wp) # 0 = 2z & w can be a coordinate.

ow 0z
Coordinate changes: z +— w = ¢(z), w + z = ¢~ (w) are holomorphic.

(Recall: the inverse of a holomorphic function is holomorphic.)

Summarising,

R ={(z,w) | F(z,w) = 0}: one-dimensional complex manifold. ]

In algebraic geometry, it is called a non-singular algebraic curve:

X - 1 - N aF aF
e “‘non-singular’: no singular points, where — = — = 0.
ow 0z

e “algebraic”: F'is a polynomial.

e ‘‘curve’: one-dimensional over C.
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Example: F(z,w) =w?* — 2z, R = {(z,w) | w* = z}.

oF _
ow

OF

2 — = —1.
w 0z

Hence,
e z: coordinate except at (z,w) = (0,0).
e w: coordinate everywhere.

The function y/z on R: (z,w) — w.

Defined everwhere! and holomorphic even at z = 0!
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Riemann surface of /1 — 22,

f2) = VT—22= T —2){1 1 2)
e changes its sign when z goes around +1 or —1.

e does not change its sign when z goes aound both +1 and —1.

(Figure of changes of the sign of v/1 — 22)

@ @,y

— Riemann surface of f(z) = two C's cut along |— 1] glued together.

(Figure of gluing) / /
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R = (C~ {+1}); U{—1,41} U (C~ {£1})_.
Another definition: f(z) satisfies f(2)? + 2% —1 = 0. So,
R ={(z,w) | F(z,w) = z* + w? — 1 = 0}.
Since
OF _ OF _
ow 0z

e 2 is a coordinate around (zg,wq), wg # 0, i.e., zg # *1.

2w, 2z,

e w should be used as a coordinate around (+1,0).

The function f(z) = v/1 — z?2 is defined as
f:R>(z,w) —w

on R as a single-valued function.
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What surface is R topologically?

In the picture of R as glued C's:

- e - e » o o

~ SRS r

the interval [—1, 41| seems to be a self-intersection. But it is NOT!

1 TWO points (z,w) = (2, V1 — 2?) for each z € [—1, +1].

—> Better to glue them with different orientations.

F. ~_ Z,
(Figure) /1 poteg  @Y)
S [£
/r %
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(Figure of gluz 7

= cylinder!
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Recall: we want to study elliptic integrals with complex variables.

/ V /Z

Question: Where does the 1-form w = live?

V1 — 22
Answer: on the Riemann surface R of v1 — 22.

d
There we have to replace V1 — 22 by w: w = iy
w
— w is not defined when w =0, i.e., 2z = +1. ..., NO!

Recall that at (£1,0) € R we have to use w as a coordinate.

d

w? =1— 22 % 2dw = —22dz.

1 1l —wdw  dw —dw
— w=—dz = — = —

w w oz z V1 — w2

22

= . holomorphic at (£1,0).



W = 2 _dz = —dw: holomorphic 1-form on the whole R.

Vi—22 w 2

Recall: If f(z) is an entire function (= holomorphic on the whole C), the

indefinite integral
F(z) ::/ f(2")dz2
20

defines a single-valued holomorphic function by virtue of Cauchy’s integral

: C—C’
theorem: (Figure zp —— z)

/ f(z)dz = f(2")dz.
C C’

. dz
How about the integral of w = ? 2

V1—22
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Because of the non-trivial topology of R, / w depends on C.
C

+1 - T

w: (Figure of Cp) ™
/Co ( ) \C" P/Cb
P

-1 — ~4 +]

/ w: (Figure of C1)
Ch

ve —3
Q
p Ci Cl(:-'{_
Pu\_\_}
= +1 ‘v’—\ -
N
e — 41 \—/'1{
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/ w: (Figure of C5)
Co

For general contours? — Better to use terminology in topology.
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The first homology group of a topological space X: (very rough summary)

H1(X,Z) := (Free abelian group generated by closed curves in X) / ~ .
The equivalence relation: for closed curves C, C’,
C] ~ [0 = C71C' = U(boundaries of domains).

(“C and C’ are homologically equivalent™).

Figure: homological equivalence.

~ C+C'

o
e homotopically equivalent = homologically equivalent.

e Hi(X,Z): an abelian group.
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Using this terminology:

R ~ cylinder = H(R,Z) = Z[A].

o do= L

.
Oy — [Col = —[A] in Hy(R.Z) — /Clw /Cow —/Aw.

Previous examples:

[C1] = [Co] = [A] in Hi(R,Z)

In general,

C(P — Q)]-[Co] € HI(R,Z) = Z[A]

:>/ w—/w:n/w, n e 7
C(P—Q) Co A
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/ w: period of 1-form w over A.
A

Shrink A to Ap: /w:/ W
A Ao

(Figure of Ag: sign of v/1 — z? are different on each half plane.)

/ Y /1 de | /1 —dz
Ao \/1—332 V11— x?
r=—1

= arcsinx|,__, — arcsinz|;

-9
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When P moves from 2z € C and comes back to z,

changes by 27 x (integer): u(x) ~» u(x) + 27n, n € Z.

<= the inverse function x(u) of u(x) has period 27:

r(u+ 2mn) = x(u), n € 7.

In fact,

x
d
u(x) = / ~_ — arcsin T, x(u) = sinu.
0

V1 — 2

“sin u is periodic because of the topology of the cylinder!”
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