Elliptic Functions

Takashi Takebe

15 February 2018

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

(your final mark) = min
$$\left\{\text{integer part of } \frac{3}{2}(\text{total points you get}), 10\right\}$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of **9 10**: 1 March 2018.
- **9.** (1 pt.) Prove that,

$$K(k) \to \infty,$$

 $\operatorname{sn}(u,k) \to \tanh u = \frac{\sinh u}{\cosh u},$
 $\operatorname{cn}(u,k), \ \operatorname{dn}(u,k) \to \operatorname{sech} u = \frac{1}{\cosh u},$

when the modulus $k \in (0,1)$ tends to 1.

10. (1 pt.) Complete the proof of the addition formula of $\operatorname{sn} u$, finishing the computation omitted in the lecture, especially $\frac{dN}{du}D=N\frac{dD}{du}$. Then, using this addition formula, prove the addition formulae for $\operatorname{cn} u$ and $\operatorname{dn} u$:

$$\operatorname{cn}(u+v) = \frac{\operatorname{cn} u \operatorname{cn} v - \operatorname{sn} u \operatorname{sn} v \operatorname{dn} u \operatorname{dn} v}{1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v},$$
$$\operatorname{dn}(u+v) = \frac{\operatorname{dn} u \operatorname{dn} v - k^2 \operatorname{sn} u \operatorname{sn} v \operatorname{cn} u \operatorname{cn} v}{1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v}.$$

It is enough to check the consistency of these formulae with the definitions of cn and dn. (You can omit checking the signs of square roots.)

(Hint: The following equations might be useful.

For
$$\operatorname{cn}(u+v)$$
: $1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v = \operatorname{cn}^2 u + \operatorname{sn}^2 u \operatorname{dn}^2 v = \operatorname{cn}^2 v + \operatorname{sn}^2 v \operatorname{dn}^2 u$.
For $\operatorname{dn}(u+v)$: $1 - k^2 \operatorname{sn}^2 u \operatorname{sn}^2 v = \operatorname{dn}^2 u + k^2 \operatorname{sn}^2 u \operatorname{cn}^2 v = \operatorname{dn}^2 v + k^2 \operatorname{sn}^2 v \operatorname{cn}$.