Лекция 17-18. Вложенные подмногообразия и нормальные формы

1 Почленное интегрирование

Теорема 1 Пусть последовательность непрерывных функций равномерно сходится на отрезке, и пусть последовательность их первообразных сходится в одной точке. Тогда последовательность этих первообразных равномерно сходится на том же отрезке.

2 Почленное дифференцирование

Теорема 2 (Вейерштрасс) Пусть последовательность непрерывных производных дифференцируемых функций равномерно сходится на отрезке, и пусть последовательность самих функций сходится в одной точке. Тогда последовательность функций сходится равномерно, и производная предела равна пределу производных.

Теорема 3 Пусть последовательность функций и всех их непрерывных частных производных до порядка N сходится равномерно на открытой области пространства \mathbb{R}^n . Тогда производные пределов до порядка N равны пределам соответствующих производных.

Теорема 2 немедленно следует из теоремы 1. Теорема 3 выводится из теоремы 2 индукцией по N.

3 Пространство C^k

Определение 1 Пространство $C^k_{[a,b]}$ -это пространство k раз непрерывно дифференцируемых функций на отрезке [a,b] с метрикой

$$\rho(f,g) = \sum_{1}^{k} \max_{[a,b]} |f^{(j)} - g^{(j)}|.$$

Определение 2 Пространство C_{Ω}^{N} -это пространство k раз непрерывно дифференцируемых функций на области Ω , c метрикой

$$\rho(f,g) = \sum_{|k|=1}^{N} \max_{\Omega} |D^k f - D^k g|.$$

Теорема 4 Для любых N и Ω , пространство C^N_{Ω} полно.

Материал последних трех разделов разбирался на упражнениях.

4 Теорема о неявной, многомерный случай.

Теорема 5 Пусть f- C^1 -гладкое отображение области пространства \mathbb{R}^n в \mathbb{R}^m , $m \le n$. Тогда в окрестности каждой точки a, в которой

$$rk \ df(a) = m,$$

множество

$$M_a = \{ x \in \mathbb{R}^n | f(x) = f(a) \}$$

локально задается в виде графика C^1 -гладкого отображения некоторого координатного пространства \mathbb{R}^{n-m} в дополнительное пространство \mathbb{R}^m .

Доказательство Рассмотрим ненулевой минор якобиевой матрицы df(a). Перенумеруем переменные

$$(x_1, \ldots, x_n) \mapsto (x, y) = (x_1, \ldots, x_{n-m}, y_1, \ldots, y_m)$$

так, что

$$\det \frac{\partial f}{\partial u}(a) \neq 0.$$

Рассмотрим отображение

$$(x,y) \mapsto (X,Y) = (x, f(x,y)).$$

Дальнейшие рассуждения—как в доказательстве теоремы о неявной для функции двух переменных. \Box

5 Старшие производные.

Теорема 6 Если в условиях предыдущей теоремы $f \in C^N$, то и $\varphi \in C^N$.

Доказательство Это следует из теоремы о \mathbb{C}^N -гладкости обратного отображения.

6 Одномерные подмногообразия.

Определение 3 Одномерным C^N -подмногообразием координатной плоскости называется множество, которое в окрестности каждой точки задается как график C^N -отображения одной из координатных осей (выбор которой может зависеть от точки) в другую.

Следствие 1 теоремы 6 Некритическое (т.е. не содержащее критических точек) множество уровня C^N -гладкой функции на плоскости является одномерным C^N -подмногообразием.

7 Вложенные подмногообразия.

Определение 4 m-мерным C^N -подмногообразием координатного пространства \mathbb{R}^N называется множество, которое в окрестности каждой своей точки задается как график C^N -отображения зависящей от точки координатной плоскости \mathbb{R}^{n-m} в дополнительную координатную плоскость \mathbb{R}^m .

Определение 5 Критической точкой отображения $f: \mathbb{R}^n \to \mathbb{R}^m$, $m \le n$, называется точка, в которой $rank\ df < m$. Множество уровня отображения f назавется некритическим, если оно не содержит критических точек, и критическим в противном случае.

Следствие 2 теоремы 6 Некритическое множество уровня C^N -отображения из \mathbb{R}^n в \mathbb{R}^m (то есть множество уровня, во всех точках которого ранг отображения равен m), является m-мерным C^N -подмногообразием \mathbb{R}^n .