Семинар 14. Геометрия унитарных пространств

Во всех задачах V - конечномерное комплексное векторное пространство, снабженное эрмитовым скалярным произведением (,) (унитарное пространство).

- **Задача 1.** Пусть $e_1,...,e_n$ ортонормированный базис пространства V. Докажите, что $w=(w,e_1)e_1+(w,e_2)e_2+...(w,e_n)e_n$ для любого вектора $w\in V$.
- **Задача 2.** Докажите, что линейный оператор $A:V\to V$, матрица которого является унитарной в некотором ортонормированном базисе пространства V, является унитарным.

Линейный оператор B в пространстве V называется сопряженным к линейному оператору A, если (Ax,y)=(x,By). (Обозначение: $B=A^*$.) Оператор A называется самосопряженным (или эрмитовым), если $A=A^*$. Оператор A называется антисамосопряженным (или антиэрмитовым), если $A=-A^*$. Имеет место следующая теорема, которая будет доказана на лекции: если оператор A самосопряжен, либо антисамосопряжен, либо унитарен, то он диагонализируется в некотором ортонормированном базисе в V.

- **Задача 3.** а) Докажите, что для любого оператора A в V сопряженный к нему оператор A^* существует и единственен.
- б) Докажите, что матрица F (анти)самосопряженного оператора A в произвольном ортонормированном базисе является (анти)эрмитовой, то есть $F = F^*$ (соответственно, $F = -F^*$).
- в) Как связаны собственные значения операторов A и A^* ?
- **Задача 4.** Линейный оператор A в V называтся *положительным*, если (Ax, x) > 0 для любого ненулевого вектора $x \in V$. Пусть A положительный самосопряженный оператор в V.
- а) Докажите, что А невырожден.
- б) Докажите, что из A извлекается положительный квадратный корень, то есть существует положительный самосопряженный оператор B в V такой, что $A=B^2$.
- **Задача 5.** Пусть A невырожденный оператор в V. Докажите, что AA^* положительный самосопряженный оператор.

Дополнительные задачи к семинару 14

Задача 1. а) Докажите, что для любых двух наборов комплексных чисел $(x_1,...,x_n)$ и $(y_1,...,y_n)$ имеет место неравенство:

$$(|\sum x_i \overline{y}_i|)^2 \leqslant (\sum |x_i|^2)(\sum |y_i|^2).$$

- б) Выразите эрмитово скалярное произведение (v, w) двух произвольных векторов $v, w \in V$ через нормы подходящих линейных комбинаций этих векторов. (Это эрмитов аналог выражения билинейной формы через ассоцированную с ней квадратичную форму.)
- **Задача 2.** Докажите, что для всякого унитарной матрицы U существует такая эрмитова матрица A, что $U=\exp(iA).$
- **Задача 3.** Две матрицы A и B называются yнитарно эквивалентными, если существует такая унитарная матрица U, что $B = U^{-1}AU$. Всякая ли матрица унитарно эквивалентна своей жордановой нормальной форме?