Логика и алгоритмы (весна 2018)

В.Б. Шехтман

20 апреля 2018 г.

Лекция 1

Пропозициональные формулы

Определение 1 Фиксируем счетное множество пропозициональных переменных $PV = \{p_1, p_2, \ldots\}$. Множество пропозициональных формул PFm строится из этих переменных, логических связок \land , \lor , \rightarrow , \neg и скобок по индукции:

- (1) Echu $A \in PV$, mo $A \in PFm$.
- (2) Ecau $A, B \in PFm$, mo $(A \wedge B) \in PFm$.
- (3) Ecnu $A, B \in PFm$, mo $(A \lor B) \in PFm$.
- (4) Ecsu $A, B \in PFm$, mo $(A \to B) \in PFm$.
- (5) Ecau $A \in PFm$, mo $\neg A \in PFm$.

Таким образом, формулы — это конечные последовательности знаков, т.е. слова в алфавите, состоящем из переменных, связок и скобок. При записи формул применяются дополнительные сокращения: внешние скобки опускаются; для экономии внутренних скобок устанавливается приоритет связок: \land сильнее \lor , \lor сильнее \rightarrow ,

Будем использовать знак $\stackrel{\bullet}{=}$ ("графическое равенство") для обозначения равенства (совпадения) слов.

Лемма 1.1 (Лемма об однозначном анализе формул) Для любой формулы С выполнено ровно одно из условий:

- (I) $C \in PV$,
- (II) Существует единственная пара формул A, B, такая что $C \stackrel{\bullet}{=} (A \wedge B)$,

- (III) Существует единственная пара формул A,B, такая что $C\stackrel{\bullet}{=} (A\vee B),$
- (IV) Существует единственная пара формул A, B, такая что $C \stackrel{\bullet}{=} (A \to B)$,
- (V) Существует единственная формула A, такая что $C \stackrel{\bullet}{=} \neg A$.

Доказательство этой леммы мы пропустим; его можно найти, например, в [1].

Определение 2 Оценкой (пропозициональных переменных) называется любое отображение $\theta: PV \longrightarrow \{0,1\}$.

Лемма 1.2 Для любой оценки θ существует единственное отображение $A \mapsto |A|_{\theta}$ пропозициональных формул ϵ $\{0,1\}$, такое что для всех A,B

- (1) $|A|_{\theta} = \theta(A)$, ecau $A \in PV$,
- (2) $|A \wedge B|_{\theta} = \min(|A|_{\theta}, |B|_{\theta}),$
- (3) $|A \vee B|_{\theta} = \max(|A|_{\theta}, |B|_{\theta}),$
- (4) $|A \to B|_{\theta} = \max(1 |A|_{\theta}, |B|_{\theta}),$
- (5) $|\neg A|_{\theta} = 1 |A|_{\theta}$.

Доказательство Определяем $|C|_{\theta}$ индукцией по длине C. Если C — переменная, то все ясно: $|C|_{\theta} = \theta(C)$.

Пусть n>1 и $|C'|_{\theta}$ однозначно определено на всех формулах C' длины < n. Рассмотрим формулу C длины n. По лемме 1.1, возможен ровно один из случаев (2)–(5). В каждом случае $|C|_{\theta}$ однозначно доопределяется. Например, в случае (2) $C=(A \wedge B)$, и полагаем $|C|_{\theta}=\min(|A|_{\theta},|B|_{\theta})$, и т. д.

 $|C|_{\theta}$ называется значением формулы C при оценке θ .

Определение 3 Формула называется тавтологией (или общезначимой), если при любой оценке она принимает значение 1.

 Φ ормула называется выполнимой, если найдется оценка, при которой она принимает значение 1.

Очевидно, что для любой формулы A:

- A тавтология $\Leftrightarrow \neg A$ не выполнима.
- A выполнима $\Leftrightarrow \neg A$ не тавтология.

Определение 4 Формулы A и B называются равносильными (или эквивалентными), если при всех оценках их значения совпадают.

Равносильность формул обозначается знаком ~.

Очевидно, что отношение равносильности рефлексивно, симметрично и транзитивно. Обозначим через \top формулу $P_1 \to P_1$, а через \bot — формулу $P_1 \wedge \neg P_1$.

Лемма 1.3

- (1) $A \sim B \Leftrightarrow ((A \to B) \land (B \to A))$ тавтология.
- (2) A- тавтология $\Leftrightarrow A \sim \top$.

Доказательство (1) Заметим, что

$$|A|_{\theta} = |B|_{\theta} \Leftrightarrow |(A \to B) \land (B \to A)|_{\theta} = 1.$$

Действительно,

$$|(A \to B) \land (B \to A)|_{\theta} = 1 \Leftrightarrow |A \to B|_{\theta} = |B \to A|_{\theta} = 1$$

Но обе импликации $(A \to B)$, $(B \to A)$ истинны только в двух случаях: когда формулы A, B обе истинны или обе ложны, т.е. когда $|A|_{\theta} = |B|_{\theta}$. (2) очевидно.

Исчисление высказываний

Тавтологии можно получать как теоремы в некоторой аксиоматической системе — исчислении высказываний. Имеются разные варианты таких исчислений. Мы будем рассматривать исчисление *гильбертовского типа*. Оно задается множеством *аксиом* и *правил вывода*. *Теоремы* выводятся из аксиом с помощью правил, для этого строится *доказательство* — некоторая последовательность формул.

Приведем одну из формулировок исчисления высказываний (CL).

Схемы аксиом

(A1) $A \rightarrow (B \rightarrow A)$

$$(A2) \ (A \to (B \to C)) \to ((A \to B) \to (A \to C))$$

(A3) $A \wedge B \rightarrow A$

(A4) $A \wedge B \rightarrow A$

(A5)
$$A \to (B \to A \land B)$$

(A6) $A \rightarrow A \vee B$

(A7) $B \to A \vee B$

(A8)
$$(A \to C) \to ((B \to C) \to (A \lor B \to C))$$

(A9)
$$(A \rightarrow \neg B) \rightarrow ((A \rightarrow B) \rightarrow \neg A)$$

 $(A10) \neg A \rightarrow (A \rightarrow B)$

(A11) $\neg A \lor \neg A$

Здесь A, B, C — произвольные формулы, а потому каждая из схем (A1)—(A11) порождает бесконечную серию аксиом.

Единственное правило вывода — Modus Ponens (MP), которое записывается так:

$$\frac{A, A \to B}{B}$$
.

Эта запись означает, что если доказаны формулы A и $A \to B$, то можно доказать B.

Определение 5 Доказательство (или вывод) в CL — это конечная последовательность формул, каждая из которых — аксиома или получается из предыдущих по правилу MP.

Точнее: доказательство формулы A — это такая последовательность формул $A_1, \ldots, A_n \stackrel{\bullet}{=} A$, что для всех k $(1 \le k \le n)$

 A_k — аксиома или существуют i, j < k, для которых $A_j \stackrel{\bullet}{=} A_i \to A_k$.

Действительно, из A_i и $A_i \to A_k$ по MP получается как раз A_k .

Формула A, для которой существует доказательство в CL, называется $meope Moй\ CL$, или $eы Bodu Moй\ BCL$; это записывается так: $\vdash_{CL} A$. Индекс CL не пишем, если ясно, что речь идет об этом исчислении.

Пример 1 $\vdash A \lor B \to B \lor A$.

Приведем доказательство (с комментариями). Для удобства обозначим формулу $B \lor A$ через C.

$$\begin{array}{lll} 1. \ A \to C & (\mbox{аксиома } 7) \\ 2. \ B \to C & (\mbox{аксиома } 6) \\ 3. \ (A \to C) \to ((B \to C) \to (A \lor B \to C)) & (\mbox{аксиома } 8) \\ 4. \ (B \to C) \to (A \lor B \to C) & (2,4, \mbox{ MP}) \\ 5. \ A \lor B \to C & (1,3, \mbox{ MP}) \end{array}$$

Формула 5 и есть нужная теорема.

Пример 2 $\vdash A \to A$. Обозначим эту формулу B.

1. $A \rightarrow B$	(аксиома 1)
$2. A \rightarrow (B \rightarrow A)$	(аксиома 1)
3. $(A \rightarrow (B \rightarrow A)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow A))$	(аксиома 2)
$(A \rightarrow B) \rightarrow (A \rightarrow A)$	(2,3, MP)
$5. A \rightarrow A$	(1.4, MP)

Определение 6 Пусть Γ — какое-то множество пропозициональных формул ("гипотез"). Вывод из Γ в CL — это конечная последовательность формул, каждая из которых — аксиома или принадлежит Γ или получается из предыдущих по правилу MP.

T.e. это последовательность формул A_1,\ldots,A_n , где для всех k A_k — аксиома или $A_k \in \Gamma$ или существуют i,j < k, для которых $A_j \stackrel{\bullet}{=} A_i \to A_k$.

Формула A выводима из Γ , если существует вывод из Γ с последней формулой A; обозначение: $\Gamma \vdash_{CL} A$.

Очевидно, что вывод из $\Gamma = \emptyset$ — это обычный вывод из аксиом (в CL).

Лемма 1.4

- (1) Ecau $\Delta \subseteq \Gamma$ u $\Delta \vdash A$, mo $\Gamma \vdash A$.
- (2) Если $\Gamma \vdash A$, то существует конечное $\Delta \subseteq \Gamma$, для которого $\Delta \vdash A$.
- (3) ("транзитивность выводимости", или "сечение") $E c n u \ \Gamma \vdash A, \ u \ \Delta \vdash B \ \partial n s \ s c e x \ B \in \Gamma, \ mo \ \Delta \vdash A.$

Если условие $\Delta \vdash B$ для всех $B \in \Gamma$ обозначить как $\Delta \vdash \Gamma$, то утверждение (3) запишется так:

Если
$$\Delta \vdash \Gamma$$
 и $\Gamma \vdash A$, то $\Delta \vdash A$.

Отсюда название "транзитивность".

Доказательство (1) очевидно.

- (2) также очевидно: можно составить Δ из тех гипотез, которые встречаются в выводе A; их конечное число.
- (3) Предположим, что $\Delta \vdash \Gamma$ и $\Gamma \vdash A$. Возьмем вывод A из Γ ; в нем встречаются какие-то гипотезы B_1, \ldots, B_n из Γ (возможно, с повторениями):

$$\dots B_1, \dots, B_n, \dots, A.$$

Заменим в этом выводе каждую B_i на ее вывод Π_i из Δ :

$$\dots \Pi_1, \dots, \Pi_n, \dots, A.$$

Получится вывод A из из Δ . Действительно, все формулы из исходного вывода, кроме гипотез $B_i,$ — аксиомы CL или получаются из предыдущих по MP. А в каждом вставном выводе Π_i все формулы — аксиомы CL или входят в Δ или получаются по MP из предыдущих (внутри того же Π_i).

Вместо $\{A_1,\dots,A_n\}\vdash_{CL} B$ обычно пишут $A_1,\dots,A_n\vdash_{CL} B$. Говорят также, что $\dfrac{A_1,\dots,A_n}{B}-$ производное правило CL.

Если из выводимости формул A_1, \ldots, A_n следует выводимость B, то говорят, что $\frac{A_1,\ldots,A_n}{B}$ — допустимое правило CL.

Лемма 1.5 Всякое производное правило CL допустимо. 1

Пусть $\Gamma = \{A_1, \dots, A_n\} \vdash B$. Тогда, если $\varnothing \vdash \Gamma$, то Доказательство $\varnothing \vdash B$ — по транзитивности выводимости:

Транзитивность выводимости означает, что уже доказанные теоремы можно использовать в новых выводах, не повторяя из доказательств. Полученные допустимые правила также можно применять для сокращения доказательств.

Пример 3 Допустимо правило введения конъюнкции

$$\frac{A,B}{A\wedge B}.$$

Действительно, $A, B \vdash A \land B$:

- 1. A (гипотеза)
- 2. *B* (гипотеза)
- 3. $A \to (B \to A \land B)$ (аксиома A5)
- $4. B \rightarrow A \land B$ (1,3, MP)
- 5. $A \wedge B$ (2,4, MP)

Теорема о дедукции для исчисления высказываний

Теорема 1.6 $(теорема^2 \ o \ \partial e \partial y \kappa u u u)$

$$\Gamma, A \vdash_{CL} B \Leftrightarrow \Gamma \vdash_{CL} A \to B.$$

Здесь Γ , A обозначает множество $\Gamma \cup \{A\}$.

 $^{^{1}}$ Обратное утверждение тоже верно при некотором уточнении понятия "правило вывода".

 $^{^{2}}$ Конечно, это — не теорема нашего формального исчисления, а утверждение о его свойствах ("метатеорема").

Доказательство Утверждение (\Leftarrow) почти очевидно. Действительно, пусть $\Gamma \vdash A \to B$. Тогда имеем $\Gamma, A \vdash A, A \to B$ и $A, A \to B \vdash B$ (MP). Отсюда по транзитивности $\Gamma, A \vdash B$.

Утверждение (\Rightarrow) доказывается индукцией по длине вывода B из Γ, A .

- (1) Если этот вывод длины 1, то B аксиома или гипотеза. Если B аксиома, то имеем вывод $A \to B$ (из \varnothing):
 - 1. *B* (аксиома)
 - 2. $B \to (A \to B)$ (аксиома A1)
 - $3. A \to B \qquad (1,2, MP)$
 - (2) Если $B \in \Gamma$, то имеем такой же вывод $A \to B$ из Γ :
 - В (гипотеза)
 - 2. $B \to (A \to B)$ (аксиома A1)
 - 3. $A \rightarrow B$ (1,2, MP)
 - (3) Если B=A, то $A\to B=A\to A$. Но $\vdash A\to A$ (пример 2 выше).
- (4) Предположим теперь, что $\Gamma, A \vdash B$ и утверждение (\Rightarrow) верно для всех более коротких выводов, т.е.

для всех C, если $\Gamma,A \vdash C$ и вывод C из Γ,A короче, чем вывод B, то $\Gamma \vdash A \to C$.

Докажем, что $\Gamma \vdash A \to B$.

Рассмотрим вывод из Γ, A , который заканчивается формулой B. При этом B может оказаться аксиомой или гипотезой (тогда все предыдущие формулы для доказательства B не нужны). Но в этом случае $\Gamma \vdash A \to B$ по (1)–(3).

Остается случай, когда B получается по MP из формул $C,C\to B$, причем $\Gamma,A\vdash C$ и $\Gamma,A\vdash C\to B$ с более короткими доказательствами. По предположению индукции имеем

$$(*)\ \Gamma \vdash A \to C,\ A \to (C \to B).$$

С другой стороны,

$$(**)$$
 $A \rightarrow C$, $A \rightarrow (C \rightarrow B) \vdash A \rightarrow B$:

- 1. $A \to C$ (гипотеза)
- $2. A \rightarrow (C \rightarrow B)$ (гипотеза)
- 3. $(A \to (C \to B)) \to ((A \to C) \to (A \to B))$ (аксиома A2)
- $4. (A \to C) \to (A \to B) \tag{2.3, MP}$
- 5. $A \rightarrow B$ (1,4, MP)

Из (*), (**) по транзитивности получаем $\Gamma \vdash A \to B$.

Отметим частный случай теоремы о дедукции для $\Gamma = \emptyset$:

$$A \vdash B \Leftrightarrow \vdash A \to B$$
.

Пример 4 (правило силлогизма)

$$A \to B, \ B \to C \vdash A \to C.$$

По теореме дедукции это равносильно

$$A \to B, \ B \to C, A \vdash C.$$

Последнее утверждение очевидно: надо два раза применить МР.

Корректность исчисления высказываний

Теорема 1.7 Все теоремы CL — тавтологии.

Доказательство Индукцией по n доказываем что если $\vdash A$ и A имеет вывод длины n, то A — тавтология.

Если A — аксиома, то это проверяется непосредственно.

Шаг индукции.

Пусть имеет вывод длины n, в котором она получается по MP из B и $B \to A$. Тогда у этих формул есть выводы длины < n, и по предположению индукции, они — тавтологии. Т.е. для любой оценки θ , $|B|_{\theta} = |B \to A|_{\theta} = 1$. А тогда получается, что $|A|_{\theta} = 1$. Значит, A — тавтология.

Следствие 1.8 CL непротиворечиво, т.е. нет такой формулы A, что $\vdash_{CL} A \ u \vdash_{CL} \lnot A$.

Доказательство Иначе $A, \neg A$ — тавтологии, и тогда при всех оценках $|A|_{\theta} = |\neg A|_{\theta} = 1$, т.е. $|A|_{\theta} = 1$ и $|A|_{\theta} = 0$. Это невозможно.