Семинар 16.

Комплексификация вещественного векторного пространства

- **Задача 1.** Пусть V конечномерное вещественное векторное пространство. На вещественном пространстве и $V^{\mathbb{C}} = V \oplus V$ введен (на лекциях) оператор комплексной структуры I по формуле $I(v_1, v_2) = (-v_2, v_1)$. Пространство $V^{\mathbb{C}}$ с умножением на комплексные числа, определенным посредством оператора I, называется комплексификацией пространства V.
- а) Условимся записывать векторы $(v_1, v_2) \in V^{\mathbb{C}}$ в виде $v_1 + iv_2$. Покажите, что такая запись согласована с введенной на $V^{\mathbb{C}}$ комплексной структурой, то есть для любого $z = a + bi \in \mathbb{C}$ и любого $v_1 + iv_2 \in V^{\mathbb{C}}$ имеем $(a + bi)(v_1 + iv_2) = (av_1 bv_2) + i(bv_1 + av_2)$.
- б) Пусть $(e) = (e_1, ..., e_n)$ какой-либо базис V. Докажите, что совокупность векторов $(e^{\mathbb{C}}) = (e_1^{\mathbb{C}}, ..., e_n^{\mathbb{C}})$, где $e_k^{\mathbb{C}} := e_k + i0, \ 1 \leqslant k \leqslant n$, базис в $V^{\mathbb{C}}$.

Кватернионы

В задачах 2 и 3 рассматривается тело кватернионов \mathbb{H} , $(q_1,q_2):=\mathrm{Re}(q_1\overline{q_2})$ - скалярное произведение на \mathbb{H} , \mathbb{I} - его \mathbb{R} -подпространство чисто мнимых кватернионов, а \mathbf{i} , \mathbf{j} , $\mathbf{k} \in \mathbb{I}$ - так называемые мнимые единицы, удовлетворяющие свойствам

$$\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1, \quad \mathbf{ij} = \mathbf{k} = -\mathbf{ji}, \quad \mathbf{jk} = \mathbf{i} = -\mathbf{kj}, \quad \mathbf{ki} = \mathbf{j} = -\mathbf{ik},$$
 (1)

Задача 2. Проверьте, что i, j, k образуют ортонормированный базис в \mathbb{I} . Тем самым, эти векторы задают изоморфизм евклидова пространства (\mathbb{I} , (,)) с евклидовым пространством \mathbb{R}^3 со стандартным скалярным произведением. Докажите, что при этом изоморфизме для произвольных кватернионов $\mathbf{p}, \mathbf{q} \in \mathbb{I}$ вещественная (соответственно, мнимая) часть их произведения равна их минус скалярному (соответственно, векторному) произведению:

$$Re(\mathbf{p}, \mathbf{q}) = -(\mathbf{p}, \mathbf{q}), \quad Im(\mathbf{p}, \mathbf{q}) = \mathbf{p} \times \mathbf{q}.$$

Задача 3. Пусть тройка чисто мнимых кватернионов q_1, q_2, q_3 удовлетворяет условиям, аналогичным условиям (1):

$$q_1^2 = q_2^2 = q_3^2 = -1$$
, $q_1q_2 = q_3 = -q_2q_1$, $q_2q_3 = q_1 = -q_3q_2$, $q_3q_1 = q_2 = -q_1q_3$. (2)

Докажите, что $q_1q_2,\ q_3$ образуют ортонормированный базис в $\mathbb{I},$ согласованный с базисом $\mathbf{i},\mathbf{j},\mathbf{k}.$

Γ руппа SO(3)

Задача 4. (i) Выведите следующие соотношения для матрицы $N=\begin{pmatrix}0&-n_3&n_2\\n_3&0&-n_1\\-n_2&n_1&0\end{pmatrix}$, где $n_1^2+n_2^2+n_3^2=1$:

$$N^3 = -N, \quad N^4 = -N^2, \quad N^5 = N,$$

- (ii) Докажите, что всякий элемент g группы SO(3) как поворот на угол φ , $-\pi \leqslant \varphi \leqslant \pi$, около оси с направляющим вектором $\mathbf{n}=(n_1,n_2,n_3)$, где $n_1^2+n_2^2+n_3^2=1$, представим в виде матрицы $R_{\varphi,\mathbf{n}}=E+(\sin\varphi)N+(1-\cos\varphi)N^2$, где N матрица из пункта (i).
 - (iii) Воспользовавшись утверждениями пунктов (i) и (ii), докажите, что $R_{\varphi,\mathbf{n}} = \exp(\varphi N)$.

Дополнительные задачи к семинару 16

Задача 1. В условиях задачи 1 основного задания для произвольного (\mathbb{R} -линейного) оператора $f: V \to V$ назовем его комплексификацией $f^{\mathbb{C}}$ оператор в пространстве $V^{\mathbb{C}}$, задаваемый формулой $f^{\mathbb{C}}(v_1 + iv_2) = f(v_1) + if(v_2)$.

- а) Докажите, что это определение корректно, то есть что $f^{\mathbb{C}}$ \mathbb{C} -линейный оператор на $V^{\mathbb{C}}$.
- б) Докажите, что матрица оператора $f^{\mathbb{C}}$ в базисе $(e^{\mathbb{C}})$ совпадает с матрицей оператора f в базисе (e).

Задача 2. В условиях задачи 1 пусть на V имеется евклидова структура g(u,v). Определим на его комплексификации $V^{\mathbb{C}}$ эрмитово скалярное произведение (,) по формуле

$$(v_1 + iv_2, w_1 + iw_2) := g(v_1, w_1 + g(v_2, w_2) + i(g(v_2, w_1) - g(v_1, w_2)).$$

Докажите корректность этого определения.

Задача 3. В условиях и обозначениях задач 1 и 2 пусть $(f^{\mathbb{C}})^*$ - оператор, сопряженный оператору $f^{\mathbb{C}}$ относительно эрмитова скалярного произведения $(\ ,\)$.

а) Докажите, что

$$(f^{\mathbb{C}})^*(v_1 + iv_2) = f^*(v_1) + if^*(v_2), \quad v_1 + iv_2 \in V^{\mathbb{C}},$$

где f^* - линейный оператор на V, сопряженный оператору f относительно евклидовой структуры g на V.

б) Докажите, что если f - ортогональный (соответственно, самосопряженный) относительно g линейный оператор в V, то $f^{\mathbb{C}}$ - унитарный (соответственно, самосопряженный) относительно $(\ ,\)$ линейный оператор в $V^{\mathbb{C}}$.