Elliptic Functions

Takashi Takebe

12 April 2018

- If there are errors in the problems, please fix *reasonably* and solve them.
- The rule of evaluation is:

(your final mark) = min
$$\left\{ \text{integer part of } \frac{3}{2} \text{(total points you get)}, 10 \right\}$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of **16 17**: 26 April 2018.

16. Check that the 1-form $\tilde{\omega}_3(P,Q)$ on the elliptic curve $\bar{\mathcal{R}}_{\varphi}$ (deg $\varphi = 4$) defined by

$$\tilde{\omega}_3(P,Q) := \frac{1}{2} \left(\frac{w + w_1}{z - z_1} - \frac{w + w_2}{z - z_2} \right) \frac{dz}{w}$$

satisfies the properties required in the lecture (12 April 2018) in the following cases (i) and (ii). Here (z_i, w_i) (i = 1, 2) are coordinates of the points P and Q on $\overline{\mathcal{R}}_{\varphi}$.

(i) (1 pt.) $P = (z_1, w_1), Q = (z_2, w_2)$ are not neither branch points nor ∞_{\pm} .

(Hint: You have to check the holomorphicity separately at (1) $(z, w) \in \mathcal{R}_{\varphi}$, $z \notin \{z_1, z_2, \alpha_0, \ldots, \alpha_3\}$; (2) $(z_i, -w_i) \in \mathcal{R}_{\varphi}$ (i = 1, 2); (3) $(\alpha_j, 0) \in \mathcal{R}_{\varphi}$; (4) ∞_{\pm} (use the coordinate $\xi = 1/z$).

(ii) (1 pt.) At least one of P and Q is a branch point.

(iii) (1 pt.) Find $\tilde{\omega}_3(P,Q)$ with the same properties when $P = \infty_{\pm}$ or $Q = \infty_{\pm}$ or both of them are at infinity. (Hint: When $z_1 \to \infty$, $w_1 \sim \pm \sqrt{a}z_1^2$. Hence naive limit $\lim_{z_1 \to \infty} \tilde{\omega}_3(P,Q)$ diverges. Find an appropriate $\lambda = \lambda(z_1)$ and take the limit $\lim_{z_1 \to \infty} (\tilde{\omega}_3(P,Q) - \lambda \omega_1)$.)

17*. (2 pt.) Find meromorphic 1-forms as in **16** on the elliptic curve $\overline{\mathcal{R}}_{\varphi}$ when deg $\varphi = 3$.