Elliptic Functions

Takashi Takebe

12 April 2018

- If there are errors in the problems, please fix reasonably and solve them.
- The rule of evaluation is:

$$
(\text { your final mark })=\min \left\{\text { integer part of } \frac{3}{2}(\text { total points you get }), 10\right\}
$$

- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of $\mathbf{1 6}$ - 17: 26 April 2018.

16.

Check that the 1-form $\tilde{\omega}_{3}(P, Q)$ on the elliptic curve $\overline{\mathcal{R}}_{\varphi}(\operatorname{deg} \varphi=4)$ defined by

$$
\tilde{\omega}_{3}(P, Q):=\frac{1}{2}\left(\frac{w+w_{1}}{z-z_{1}}-\frac{w+w_{2}}{z-z_{2}}\right) \frac{d z}{w}
$$

satisfies the properties required in the lecture (12 April 2018) in the following cases (i) and (ii). Here $\left(z_{i}, w_{i}\right)(i=1,2)$ are coordinates of the points P and Q on $\overline{\mathcal{R}}_{\varphi}$.
(i) (1 pt.) $P=\left(z_{1}, w_{1}\right), Q=\left(z_{2}, w_{2}\right)$ are not neither branch points nor $\infty_{ \pm}$.
(Hint: You have to check the holomorphicity separately at (1) $(z, w) \in \mathcal{R}_{\varphi}$, $z \notin\left\{z_{1}, z_{2}, \alpha_{0}, \ldots, \alpha_{3}\right\} ;(2)\left(z_{i},-w_{i}\right) \in \mathcal{R}_{\varphi}(i=1,2) ;(3)\left(\alpha_{j}, 0\right) \in \mathcal{R}_{\varphi} ;(4) \infty_{ \pm}$ (use the coordinate $\xi=1 / z$).)
(ii) (1 pt.) At least one of P and Q is a branch point.
(iii) (1 pt.) Find $\tilde{\omega}_{3}(P, Q)$ with the same properties when $P=\infty_{ \pm}$or $Q=\infty_{ \pm}$ or both of them are at infinity. (Hint: When $z_{1} \rightarrow \infty, w_{1} \sim \pm \sqrt{a} z_{1}^{2}$. Hence naive limit $\lim _{z_{1} \rightarrow \infty} \tilde{\omega}_{3}(P, Q)$ diverges. Find an appropriate $\lambda=\lambda\left(z_{1}\right)$ and take the limit $\lim _{z_{1} \rightarrow \infty}\left(\tilde{\omega}_{3}(P, Q)-\lambda \omega_{1}\right)$.)

17*. (2 pt.) Find meromorphic 1-forms as in $\mathbf{1 6}$ on the elliptic curve $\overline{\mathcal{R}}_{\varphi}$ when $\operatorname{deg} \varphi=3$.

