Темы курсовых работ на 2018-2019 учебный год профессор Т.Такебе

Если студент не контактирует с Такебе достаточно часто, Такебе откажет от дальнейшего руководства.

1-2 курс | **1. О**ј

1. Ортогональные многочлены.

В линейном пространстве многочленов R[x] (и в C[x]) можно определять разные скалярные произведения с помощью интеграла. Ортогональные многочлены - естественные ортонормированные базисы этого пространства и имеют интересные свойства.

Пример задач:

- Вывод формулы Christoffel-Darboux и её приложение.
- Вывод формулы квадратуры Гаусса и конкретное вычисление с этой формулой.

<u>Литература:</u> Gabor Szego "Orthogonal Polynomials" Ch. II & III (with examples in Ch. IV & V) или русский перевод этой книги.

(Интеграл Лебега использован, но не существен для нас.)

Полиа, Сеге «Задачи и теоремы из анализа» Например, Отдел Шестой.

1-3 курс

2. Эллиптические интегралы и эллиптические функции

Эллиптический интеграл — определённый или неопределенный интеграл функции R(t, P(t)), где R(t,x) — рациональная функция двух переменных, P(t) — квадратный корень из полинома третьей или четвёртой степени с несовпадающими корнями. В общем случае, эллиптический интеграл не может быть выражен в элементарных функциях. Но такие интегралы и обратные функции неопределённых интегралов (эллиптические функции) появляются в разных проблемах математики и физики. Например: длина эллипса, длина графиков тригонометрических функций, движение маятника, форма скакалки, форма волны...

Пример задач:

- приложения и классификация эллиптических интегралов, (для 1-2 курса)
- дифференциальные уравнения для эллиптических функций и их приложения, (для 2-3 курса)
- формулы сложения эллиптических функций (разные доказательства известны; с помощью теории функций комплексной переменной, с помощью дифференциальных уравнений, геометрическое доказательство Якоби с помощью движения маятника, ...) (для 3 курса)

<u>Литература</u>: сами найдите. Например, записки лекций Такебе: https://math.hse.ru/elliptic_functions18

2-3 курс

3. Солитоны

Известно, что дифференциальные уравнения в частных производных, которые являются нелинейными по неизвестной функции, вообще очень трудно

решать. Но специальные уравнения (уравнение КдФ, уравнение КП, цепочка Тоды, ...) можно решить забавными вычислениями рядов дифференциальных операторов.

Примеры задач:

- явная формула для 2-солитоного решения (u(t,x) = ...) Кд Φ а; явная формула тау-функции находится в разных литературах.
- явная формула для N-солитоного решения КдФа.
- "Visualization" таких решений. Например, посмотрите

http://www.math.h.kyoto-u.ac.jp/~takasaki/soliton-lab/gallery/solitons/index-e.html

- вывод уравнения Буссинеска (Boussinesq equation) из иерархии КП
- 1,2,...N-солитоные решения Бусинеска: тау-функция почти такая же как $Kд\Phi$. A u(t,x)? Visualization?
- разные явные решения КдФа, Буссинеска, КП, ... (примеры: алгеброгеометрическое решение Кричевера; решение, тау-функция которого является функцией Шура; ...)

<u>Литература</u>: Т. Мива, М. Джимбо, Э. Датэ «Солитоны» гл. 2, 3. *(для 2 курса)* Дальше. гл. 4-6: решения дифференциальных уравнений с помощью алгебры Клиффорда. *(для 3 курса)*

(Теория функции комплексной переменной использована, но можно обходить.)

4. Теория иерархии КП

Каждое решение иерархии КП, одной из интегрируемых систем нелинейных дифференциальных уравнений с бесконечным числом переменных и неизвестных, соответствует точке бесконечномерного многообразия (Грассманниан Сато). Это красивое соответствие описывается и фермионами (смотрите вышеуказанную литературу Мивы, Джимбо и Датэ), и непосредственным образом без фермионов (подход Сато).

Примеры задач:

- обобщение подхода Сато на другие иерархии (мКП, В-КП, Тода,...)
- интерпретации других методов решений интегрируемых уравнений (метод обратного рассеяния, алгебро-геометрический метод,...) с точки зрения теории Сато.

<u>Литература</u>: M. Noumi, T. Takebe «Algebraic analysis of integrable hierarchies» (черновик книги).

5. Представление квантовых групп

Квантовые группы — «деформация» группы, которые обнаружили в 1980-ых годах в исследовании симметрий решёточных моделей в статистической физике. Теория представлений квантовых групп — очень важна не только для физики но и для математики.

Примеры задач:

- классификация представлений U_q(sl_2).
- квантовая двойственность Шура-Вейля (Schur-Weyl duality)
- представления алгебры Склянина и их тригонометрические пределы.
- представления $U_q(\hat sl_2)$ и уравнение Янга-Бакстера (Yang-Baxter equation).

Литература:

M. Jimbo, Quantum groups and Yang-Baxter equations. (Такебе переводил этот текст на русский язык с японского языка.)

6. Гипергеометрические уравнения и их обобщения

Гипергеометрическая функция Гаусса (Gauss's hypergeometric functions) удовлетворяет линейному обыкновенному дифференциальному уравнению второго порядка с тремя регулярными особенностями на проективной прямой. Действительно, произвольное такое уравнение сводится к гипергеометрическому уравнению заменой переменной. Поэтому гипергеометрическая функция является фундаментальным объектом в теории обыкновенных дифференциальных уравнений комплексной переменной.

Примеры задач:

- доказательство эквивалентностей разных определений гипергеометрической функции
- доказательство разных формул гипергеометрических функций
- схема Римана (Riemann scheme) и обыкновенное дифференциальное уравнение второго порядка с регулярными особенностями
- решаемость по Лиувилля (Liouville solvability) уравнения гипергеометрического типа и монодромии
- гипергеометрические функции многих переменных

<u>Литература</u>:

Whittaker, E.T. & Watson, G.N. (1927). A Course of Modern Analysis. *Cambridge, UK: Cambridge University Press*.

Yoshida, Masaaki (1997). Hypergeometric Functions, My Love: Modular Interpretations of Configuration Spaces. Braunschweig – Wiesbaden: Friedr. Vieweg & Sohn.

Kuga, M. Galois' dream: Group theory and differential equations. Translated from the 1968 Japanese original by Susan Addington and Motohico Mulase. Birkhäuser Boston, Inc., Boston, MA, *1993*.

Aomoto, K., Kita, M. Theory of Hypergeometric Functions / Transl. by Kenji Iohara. — Springer, 2011. — Vol. 305. — 317 p. — (Springer Monographs in Mathematics Series).

3 курс

7. Уравнение Пэнлеве

В конце XIX века П. Пэнлеве (P. Painleve) и Б. Гамбие (B. Gambier) классифицировали обыкновенные дифференциальные уравнение второго порядка и нашли шесть специальных уравнений, которые сегодня называются «уравнениями Пэнлеве» (Painleve equations). Раньше они считались «изолированной математикой». Но после обнаружений физиков в 1970-ых годах оказалось, что такие уравнения связаны с разными областями математики (например: алгебраическая геометрия поверхностей, группа Вейля (Weyl group), интегрируемые системы,...).

Примеры задач:

- явное описание действие группы Вейля на тау-функцию
- особые решения рационального/гипергеометрического типа

Литература:

M. Noumi, Painlevé equations through symmetry, Translations of Mathematical Monographs 223, <u>American Mathematical Society</u>, <u>ISBN 978-0-8218-3221-9</u>

8. Уравнение Лёвнера

Теорема Римана утверждает, что на каждой односвязной области D существует голоморфная функция f(z), которая является однозначным соответствием между D и единичным диском. Если D деформируется по параметру t некоторым образом, то f(z) зависит от t и удовлетворяет обыкновенному дифференциальному уравнению, которое называется уравнением Лёвнера (Loewner equation).

Примеры задач:

- Доказательство уравнения Лёвнера.
- Доказательство уравнения Лёвнера хордового типа (chordal Loewner equation).
- Доказательство гипотеза Бибербаха (Bieberbach conjecture) (высшая проблема).

<u>Литература</u>:

P. L. Duren, Univalent Functions, Grundlehren der mathematicschen Wissenschaften 259, Springer Verlag.