Логика и алгоритмы весна 2018. Задачи для семинара N 5. Игры Эренфойхта.

В задачах 1-10 рассматриваются линейные порядки в сигнатуре $\{<,=\}$.

- 1. Пусть $L_n = (\{1,2,...,n\},<,=)$. Докажите, что L_n и L_{n+1} не n-эквивалентны при n=2,3,4.
- 2. Пусть M, '—линейные порядки в сигнатуре (<,=), n>0. Тогда $x\uparrow$ обозначает интервал, состоящий из всех y>x; $x\downarrow$ обозначает интервал, состоящий из всех y< x. Докажите, что $M\equiv_n M'$, если и только если выполнены (1) и (2):
 - (1) для любого m из M найдется m' из M', так что $m \uparrow \equiv_{n-1} m' \uparrow$ и $m \downarrow \equiv_{n-1} m' \downarrow$.
 - (2) для любого m' из M' найдется m из M, так что $m \uparrow \equiv_{n-1} m' \uparrow$ и $m \downarrow \equiv_{n-1} m' \downarrow$.
- 3. При каких m Консерватор имеет выигрышную стратегию в игре $EF_m(L_6, L_7)$?
- 4. При каком наименьшем n Новатор выиграет игру $EF_n(\mathbb{N}, \mathbb{N} + \mathbb{N})$?
- 5. Докажите, что $L_m \equiv_k L_n$ при $m,n > 3^k$.
- 6. Докажите, что не существует формулы α в сигнатуре $\{<,=\}$ такой, что $L_n \vDash \alpha$, если и только если n четно.
- 7. Докажите, что $L_n \equiv_k \mathbb{N} + \mathbb{Z} + (-\mathbb{N})$ (где $(-\mathbb{N})$ множество отрицательных целых чисел) при достаточно большом n (и фиксированном k).
- 8. Докажите, что $\mathbb{N} \equiv \mathbb{N} + \mathbb{Z}$.
- 9. Докажите, что $\mathbb{Z} \equiv \mathbb{Z} + \mathbb{Z}$.
- 10. Докажите, что множество четных чисел не определимо в $(\mathbb{N}, <, =)$. (Указание: рассмотрите соответствующую формулу в $\mathbb{N} + \mathbb{Z}$).
- 11. Докажите, что абелевы группы \mathbb{Z} и \mathbb{Z}_k для различных k попарно не элементарно эквивалентны, но любая замкнутая формула, истинная в \mathbb{Z} , истинна в \mathbb{Z}_k для достаточно большого k.