Задачи к коллоквиуму по матанализу за второй семестр

(16, 19.06.2018)

- 1. Ряды с комплексными членами. Связь сходимости и абсолютной сходимости
- 2. Теорема сравнения. Признаки сходимости Даламбера и Коши
- 3. Предел равномерно сходящейся последовательности непрерывных функций
- 4. Признак Вейерштрасса
- 5. Радиус сходимости степенного ряда. Формула Коши-Адамара
- 6. Ряды Тейлора функций синус, косинус и $(1+x)^a$
- 7. Определение производной функции комплексного переменного. Производные многочленов и рациональных функций
- 8. *Голоморфность аналитических функций
- 9. *Свойства аналитических функций (раздел 4 лекции 3)
- 10. *Свойства голоморфных функций (раздел 3 лекции 7)
- 11. Определение интеграла Римана и свойства интегральных сумм
- 12. Существование интеграла Римана от непрерывной функции на отрезке
- 13. Производная от интеграла с переменным верхним пределом
- 14. Формула Ньютона-Лейбница
- 15. Интегральные теоремы о среднем
- 16. Замена переменной в неопределенном интеграле. Интегрирование по частям
- 17. Интегральная форма и форма Коши остаточного члена в формуле Тейлора
- 18. Линейность и аддитивность интеграла
- 19. Доказательство формулы $(1+\frac{z}{n})^n \to e^z, \ z \in \mathbb{C}$ (аналогичную формулу для $z \in \mathbb{R}$ считать доказанной)
- 20. Формула Эйлера как предельный случай формулы Муавра
- 21. Комплексный логарифм: определение, формула $e^{\ln z} = z$, производная комплексного логарифма
- 22. Лемма о рациональных функциях без полюсов
- 23. Разложение рациональной дроби на простейшие (случай простых нулей знаменателя)
- 24. Формулировка общей теоремы о разложении рациональной дроби на простейшие и интегрирование рациональной дроби в случае вещественных и комплексных корней знаменателя.
- 25. Связь логарифма и арктангенса
- 26. Дифференциал функции многих переменных, производная функции вдоль вектора и их связь
- 27. Достаточное условие непрерывностью функции нескольких переменных в терминах частных производных
- 28. Достаточное условие дифференцируемости и выражение дифференциала через частные производные

- 29. Норма линейного функционала. Градиент функции и норма ее дифференциала
- 30. Теорема о конечном приращении
- 31. Необходимое условие наличия экстремума
- 32. Старшие производные: определение. Равенство смешанных производных
- 33. Мультииндексные обозначения. Формула Тейлора
- 34. Малость остатка в формуле Тейлора
- 35. Гессиан. Достаточное условие наличия экстремума
- 36. Дифференциал отображения (определение). Норма линейного оператора
- 37. Многомерная теорема о конечном приращении
- 38. Теорема о дифференцировании сложной функции (композиции отображений)
- 39. Пространства l_2, l_∞, C . Норма и метрика в них. Их полнота
- 40. *Полнота l_2 и l_{∞} .
- 41. Почленное интегрирование и дифференцирование.
- 42. Пространство C^N и его полнота.
- 43. Принцип сжимающих отображений. Пикаровские приближения.
- 44. Теорема об обратном отображении: формулировка и сведение к задаче о неподвижной точке.
- 45. C^N -гладкость обратного отображения.
- 46. Теорема о неявной функции
- 47. Нормальные формы функций, отображений и подмногообразий в окрестности некритической точки.
- 48. Два определения касательного пространства к подмногообразию евклидова пространства и их эквивалентность
- 49. Необходимое условие наличия условного экстремума функции на гиперповерхности
- 50. Нахождение условного экстремума на гиперповерхности. Множители Лагранжа
- 51. Необходимое условие наличия условного экстремума функции на поверхности произвольной размерности
- 52. Нахождение условного экстремума на поверхности произвольной размерности. Множители Лагранжа
- 53. Достаточное условие условного экстремума
- 54. Аналитические функции многих переменных
- 55. Лемма Морса для аналитической функции двух переменных
- 56. *Лемма Морса для аналитической функции многих переменных
- 57. Перестройка топологии множества уровня функции в окрестности невырожденой критической точки функции трех переменных (с рисунком)
- 58. Определение многомерного интеграла Римана

- 59. Свойства интегральных сумм
- 60. Множества меры 0 и их свойства. Критерий Лебега
- 61. Теорема Дарбу
- 62. Интеграл Римана как линейный функционал.
- 63. Интеграл по множеству. Аддитивность.
- 64. Теорема Фубини для непрерывных функций и для функций, интегрируемых по Риману
- 65. Формула замены переменной

На коллоквиуме отвечающий получит три теоретических вопроса из приведенного выше списка и одну задачу из списка ниже. При ответе на теоретический вопрос нужно без подготовки сформулировать соответствующие теоремы и все необходимые определения. Для решение задачи дается 20 мин студентам-«математикам» и 30 мин студентам Совбака. Определения, не упомянутые в программе явно, нужно формулировать там, где они впервые (по нумерации вопросов в списке) необходимы.

Задачи к коллоквиуму по матанализу за второй семестр

(16, 19.06.2018)

Задача 1.2. Найдите необходимое и достаточное условие того, чтобы преобразование $z \to a\bar{z} + b$ было осевой симметрией.

Задача 1.3. Голоморфны ли функции $z, \bar{z}, |z|^2, z^2$?

Задача 1.4. Пусть |a|=1. Докажите, что функция $\arg(z+a\bar{z})$ принимает лишь два значения. Какие это значения и при каких z принимается каждое из них?

Задача 1.7. Докажите, что если ряд с положительными монотонно убывающими членами a_n сходится, To $na_n \to 0$.

Задача 1.10. Сходятся ли ряды

a)
$$\sum_{n=1}^{\infty} \frac{2^n}{n!}$$
, 6^*) $\sum_{n=1}^{\infty} \frac{n!}{(2n)^n}$, B^*) $\sum_{n=1}^{\infty} \frac{(2n)^n}{2^{n^2}}$, Γ) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$,

д)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n-1}}{n}$$
, e) $\sum_{n=1}^{\infty} \sqrt{n+1} - 2\sqrt{n} + \sqrt{n-1}$, ж) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$.

Задача 1.12. Сходятся ли равномерно на интервале $(0,\infty)$ функциональные последовательности (f_n) , $n \in \mathbb{N}$ и ряды $\sum_{n=1}^{\infty} f_n$, где:

a)
$$f_n(x) = \frac{1}{x+n}$$
, 6) $f_n(x) = \frac{1}{x+n-1}$, B) $f_n(x) = \frac{1}{x+n^2}$.

Задача 1.14. Может ли последовательность разрывных функций равномерно сходиться к непрерывной функции?

Задача 1.15. Найдите радиусы сходимости для следующих степенных рядов:

$$\mathrm{a)} \, \sum_{n=0}^{\infty} n^2 x^n, \quad \mathrm{б)} \, \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad \mathrm{г)} \, \sum_{n=0}^{\infty} 2^n x^n, \quad \mathrm{д)} \, \sum_{n=0}^{\infty} \frac{3^n + 2^n}{4^n + 3^n} x^n.$$

Задача 1.18. Докажите, что функция $f(x) = 2^{-1/x^2}$ бесконечно гладкая на всей прямой. Найдите ряд Тейлора в нуле этой функции.

Задача 2.2. Докажите, что первообразная от периодической функции сама периодична тогда и только тогда, когда интеграл от исходной функции по периоду равен нулю.

Задача 2.4. Интегрируема ли по Риману функция Дирихле?

Задача 2.9. Вычислите следующие неопределённые интегралы:

a)
$$\int \frac{dx}{1+e^x}$$
, 6) $\int \frac{dx}{1-e^x}$, B) $\int \operatorname{tg} x \, dx$, $\int \operatorname{th} x \, dx$, H) $\int x \cos x \, dx$, o) $\int x \operatorname{arctg} x \, dx$, $\int \operatorname{arctg}(\sqrt{x}) \, dx$.

Задача 3.1. а) Вычислите $\int \frac{dx}{x \ln x}$. б) Вычислите $\int \frac{dx}{x(\ln x)(\ln^{\circ 2}x)\dots(\ln^{\circ n}x)}$, где $f^{\circ k}$ — результат k-кратного применения f.

Задача 3.3. При каких α сходятся следующие интегралы: $\int_0^1 x^{\alpha} dx$; $\int_0^{\infty} x^{\alpha} dx$; $\int_0^{\infty} x^{\alpha} dx$?

4

Задача 3.5. Исследуйте на сходимость:

б)
$$\int_0^\infty \frac{(\ln x)^\beta}{x^\alpha} dx$$
, $\alpha > 0$, $\beta \in \mathbb{R}$; в) $\int_{\mathbb{R}} e^{-\varepsilon x^2 + c|x|} dx$, $\varepsilon > 0$, $c \in \mathbb{R}$.

Задача 3.6. Определим гамма-функцию при x>0 формулой $\Gamma(x)=\int_0^\infty t^{x-1}\exp(-t)dx.$

Докажите, что Γ -функция определена (интеграл сходится) при x > 0.

Докажите, что $\Gamma(x+1) = x\Gamma(x)$. Вычислите значения $\Gamma(n)$ для натуральных n.

K чему стремится $\Gamma(x)$ при $x \to 0$ и при $x \to \infty$?

Задача 3.8. При каких значениях параметров $\alpha, \beta > 0$ сходятся следующие ряды (суммирование

начинается с того
$$n$$
, с которого все члены ряда становятся определены):

а) $\sum \frac{1}{n^{\alpha}}$; б) $\sum \frac{1}{n \ln(n)^{\alpha}}$; в) $\sum \frac{1}{(n-a)^{\alpha}(n-b)^{\beta}}$; г) $\sum \frac{1}{n^{\alpha}+n^{\beta}}$; д) $\sum \frac{1}{n^{\alpha}\ln(n)^{\beta}}$.

Задача 3.11. Кривая задана в полярных координатах: $r=r(t), \ \varphi=\varphi(t), \ t\in [a,b], \ \mathrm{где} \ r, \varphi\in C^1[a,b]$ Найдите формулу для её длины, считая формулу для длины гладкой кривой в евклидовых координатах известной.

Задача 3.12. Найдите длины кривых, заданных параметрически. Здесь (x,y) — евклидовы координаты, а (r, φ) — полярные.

- а) $x(t) = t \sin(t), y(t) = 1 \cos(t), t \in [0, 2\pi]$ (циклоида);
- г) $r = \varphi, \ \varphi \in [0, 2\pi]$ (виток архимедовой спирали);
- д) $r = e^{-\varphi}$, $\varphi \in [0, \infty)$ (логарифмическая спираль).

Задача 4.1. Исследуйте непрерывность следующих функций на плоскости:

а) r (полярный радиус); б) φ (полярный угол);

в)
$$\frac{1}{x^2+y^2+1}$$
; г) $\frac{1}{x^2+y^2-1}$; д) $\frac{x+y}{x-y}$; е) $\frac{x^3-y^3}{x^3+y^3}$.

Задача 4.2. Нарисуйте графики и линии уровня функций:

а)
$$x^2 + y^2$$
; б) $x^2 - y^2$; в) xy ; ж) $x^2 + y^3 - 3y$; и) $\frac{x+y}{x-y}$; к) $\frac{x^3 - y^3}{x^3 + y^3}$.

Задача 4.5. Найдите частные производные и исследуйте дифференцируемость следующих функций:

а)
$$r$$
 (полярный радиус); б) φ (полярный угол); в) $\sin(2\arg(x+iy))$; г) $\frac{x+y}{x-y}$; д) $\frac{x^3-y^3}{x^3+y^3}$.

Задача 4.7. Найдите критические точки следующих функций, исследуйте их тип и нарисуйте линии уровня в окрестности критических точек:

a)
$$y^2 + x^3 - 3x$$
; 6) $\sin(x+y) - \cosh(x-y)$; B) $y^2 + \cosh(x)$; Γ) $y^2 + \cos(x)$.

Задача 5.4. Докажите, что невырожденные критические точки дважды гладкой функции изолированы.

Задача 5.5. Найдите невырожденные критические точки, определите их тип и нарисуйте линии уровня вблизи критических точек для функций:

a)
$$\sin(x^2 \pm y^2)$$
; b) $\cos(x^2 \pm y^2 + 2x)$; c) $xy + \frac{50}{x} + \frac{20}{y}$;

d) $\exp(x^2 - y)(5 - 2x + y)$.

Задача 5.6. Разложите в ряд Тейлора функции:

a)
$$\sin(x) + \cos(y)$$
; b) $\sin(x)\cos(y)$; c) $\sin(xy)$; d) $\exp(x+y)$.

Задача 5.7. Найдите все частные производные порядка 2018 функции $\exp(x^2+y^2)$ в точке (0,0).

Задача 5.8. Вычислите производную
$$D^{20,18}f(x,y)$$
 в точке $(0,0)$ для функции: a) $f(x,y)=\exp(x^7+y^7);$ b) $f(x,y)=\exp(x^{20}+y^{18});$ c) $f(x,y)=\sin(x+y).$

Задача 5.9. Вычислите дифференциалы и якобианы в точке $x = (x_1, x_2)$ для следующих отображений:

a)
$$x \mapsto \begin{pmatrix} 2 & 1 \\ 4 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
; b) $x \mapsto (x_1^2 + x_2^2, x_1 + x_2)$; c) $x \mapsto x + a(\sin(x_1 + x_2), \sin(x_1 - x_2))$.

Задача 5.10. Рассмотрим пространство $M \cong \mathbb{R}^{n^2}$, состоящее из квадратных матриц $n \times n$ с вещественными коэффициентами. Вычислите дифференциал отображения $M \to M$, переводящего матрицу $m \in M$ в m^2 а) в единичной матрице.

Задача 5.12. а) Докажите, что

$$\rho(f,g) = \int_{0}^{1} |f(x) - g(x)| dx$$

является метрикой в пространстве C[0,1].

b) Полно ли пространство C[0,1] в этой метрике?

Задача 5.13. Является ли метрикой на пространстве многочленов второй степени следующая функпия ρ ? Полна ли она?

a)
$$\rho(f,g) = \max_{x \in \{1,2\}} |f(x) - g(x)|$$
? b) $\rho(f,g) = \max_{x \in \{1,2,3\}} |f(x) - g(x)|$?

Задача 6.1. Докажите, что следующие отображения непрерывны:

- (a) определённое интегрирование $C[a,b] \to \mathbb{R}$, переводящее f в $\int_a^b f(x)dx$;
- (б) неопределённое интегрирование $C[a,b] \to C[a,b]$, переводящее f в $F(t) = \int_a^t f(x)dx$.

Задача 6.3. Рассмотрим пространство n-гладких функций на отрезке [a,b] (все производные, включая n-ю, определены и непрерывны).

(а) Какие из следующих выражений определяют метрику на этом пространстве:

$$d_1(f,g) = \max_{0 \le k \le n} \max_{x \in [a,b]} |f^{(k)} - g^{(k)}|, \quad d_2(f,g) = \min_{0 \le k \le n} \max_{x \in [a,b]} |f^{(k)} - g^{(k)}|, \quad d_3(f,g) = \sum_{k=1}^n \max_{x \in [a,b]} |f^{(k)} - g^{(k)}|.$$

(б) Докажите эквивалентность соответствующих метрик.

Задача 6.6. Непрерывны ли отображения:

- (a) естественного вложения $C^k[a,b]$ в $C^n[a,b]$, n < k;
- (б) дифференцирования $C^{k}[a,b]$ в $C^{k-1}[a,b]$;
- (в) неопределённого интегрирования $C^k[a,b]$ в $C^{k+1}[a,b]$.

Задача 6.7. Определите, для каких промежутков теорема о неявной функции позволяет дать решение y = y(x) уравнения $x^{2/3} + y^{2/3} = a^{2/3}$ (астроида). Найдите для этих решений dy/dx, d^2y/dx^2 . (Ответ может содержать и x, и y.)

Найдите, при каких t_0 в окрестности точки $(x_0,y_0)=(x(t_0),y(t_0))$ теорема о неявной функции позволяет локально записать эту кривую в виде $y = \varphi(x)$. Разложите в ряд Тейлора до $o((x-x_0)^2)$ соответствующую функцию φ .

Задача 6.12. Для функции z=z(x,y) найти частные производные первого и второго порядка, если (a) $z^3-3xyz=a^3$, (б) $x+y+z=e^z$.

Задача 6.14. Пусть $x = r \cos \varphi$, $y = r \sin \varphi$

Найдите матрицу частных производных $\begin{pmatrix} D_r x & D_r y \\ D_{\varphi} x & D_{\varphi} y \end{pmatrix}$. Проверьте, что при $r \neq 0$ теорема о неявной функции позволяет локально выразить x,y через r,φ . Найдите частные производные $\begin{pmatrix} D_x r & D_x \varphi \\ D_x \varphi & D_y \varphi \end{pmatrix}$.

Задача 6.16. В окрестности каких точек обратимы следующие отображения? Вычислите дифференциал обратного отображения.

(a)
$$F(x,y) = (x+y,xy)$$
; (b) $F(x,y) = (x+y,x^2+y^2)$; (b) $F(x,y) = (xy,x^y)$, $x > 0$.

Задача 7.8. а) Пусть функция имеет морсовскую критическую точку с одним отрицательным квадратом у второго дифференциала (гессиана). Пусть Γ — гладкая гиперповерхность, проходящая через эту точку. Может ли эта точка быть условным минимумом?

б) Тот же вопрос, если число отрицательных квадратов гессиана больше 1.

Задача 7.11. Найдите и исследуйте критические точки на окружности $\{x^2+y^2=1\}$ и сфере $\{x^2+y^2=1\}$ $y^2 + z^2 = 1$ } для следующих функций:

- a) xy (k = 2, 3); 6) $5x^2 + 6xy + 5y^2$ (k = 2, 3).
- Задача 7.12. а) Как связаны критические точки ограничения квадратичной формы на единичную сферу в евклидовом пространстве с собственными векторами этой формы?
- б) При каком условии на квадратичную форму эти критические точки будут морсовскими?

Задача 7.14* Пусть Γ — некритическая линия уровня функции g, и $a \in \Gamma$ — точка, критическая для ограничения $f|_{\Gamma}$, но не для f. Доказать, что линия уровня функции f, содержащая a, касается Γ в точке a.

Задача 7.15. Найдите точки условных экстремумов функции u при указанных ограничениях:

- а) $u = x^2 + y^2$ при x/a + y/b = 1 (a, b > 0 заданные параметры);
- б) $u=x^ky^lz^m$ при $x+y+z=a,\ x,y,z\geq 0\ (a,k,l,m>0$ заданные параметры); в) u=xyz при $x^2+y^2+z^2=1,\ x+y+z=0;$ г) u=xy+yz при $x^2+y^2=2,\ y+z=2,\ x,y,z>0.$

Задача 7.16. Найдите наибольшее и наименьшее значение функции u = x + y + z в области, определённой неравенствами $x^2 + y^2 < z < 1$.

- Задача 8.2. Пусть $F \in C^2(\mathbb{R}^2)$. Найдите $\iint_{[a,a'] \times [b,b']} F''_{xy}(x,y) \, dx dy$.
- **Задача 8.3.** Вычислите площадь: а) круга радиуса R, б) эллипса с полуосями a и b, в*) области, ограниченной одной аркой циклоиды $x = a(t - \sin t), y = a(1 - \cos t)$ и осью абсцисс.
- **Задача 8.4.** Вычислите интеграл от функции f(x,y) = |xy| по единичному кругу.
- **Задача 8.5.** Сведите двойной интеграл неизвестной непрерывной функции f к однократному: a) $\iint_{x^2+y^2\leq 1} f(x^2+y^2) dxdy$, B) $\iint_{x^2+y^2\leq x} f(y/x) dxdy$.
- **Задача 8.8.** Найдите координаты центра масс полукруга $x^2 + y^2 \le 1, x \ge 0$. Напомним, что координаты x_0, y_0 центра масс — это средние значения по области от функций x и y соответственно.
- Задача 8.9. Для сферической системы координат $x = r \cos \varphi \cos \psi$, $y = r \sin \varphi \cos \psi$, $z = r \sin \psi$ найдите якобиан замены евклидовых координат на сферические.
- Задача 8.10* Найдите объём а) шара радиуса R, б) тора, полученного вращением вокруг оси ℓ окружности радиуса a, которая лежит в плоскости, содержащей ℓ , причём центр окружности удалён от оси на расстояние b.
- **Задача 8.12***а) Найдите объём подмножества \mathbb{R}^n , заданного неравенствами $x_1 \geq 0, \ldots, x_n \geq 0$, $x_1 + \cdots + x_n = 1.$
- б) Найдите объём *п*-мерного правильного симплекса с ребром, равным 1.
- **Задача 8.13.** Найдите объём тела, высекаемого в октанте $x, y, z \ge 0$ поверхностью $\sqrt{x} + \sqrt{y} + \sqrt{z} = 1$.