Семинар 21. Задачи по повторение

- **Задача 1.** Напишите уравнение квадрики в пространстве \mathbb{P}^3 с коородинатами $(x_0:x_1:x_2:x_3)$, содержащей прямые $l_1=\{x_0=x_1=0\},\ l_1=\{x_2=x_3=0\}$ и $l_2=\{x_0-x_2=x_1-x_3=0\}$.
- **Задача 2.** Найдите порядок стабилизатора плоскости \mathbb{P}^2 в группе $PGL(4, \mathbf{F}_4)$, действующей на 3-мерном проективном пространстве \mathbb{P}^3 над полем \mathbf{F}_4 из 4 элементов: $\mathbf{F}_4 = \{0, 1, \alpha, \alpha+1\}$, где $\alpha^2 = \alpha+1$.
- Задача 3. Для произвольного комплексного векторного пространства V (соответственно, вещественного векторного пространства W) через $V_{\mathbb{R}}$ обозначим его овеществление (соответственно, через $W^{\mathbb{C}}$ обозначим его комплексификацию). Для линейного оператора $f:V\to V$ рассмотрим его овеществление $f_{\mathbb{R}}:V_{\mathbb{R}}\to V_{\mathbb{R}}$, и пусть $F=(f_{\mathbb{R}})^{\mathbb{C}}:(V_{\mathbb{R}})^{\mathbb{C}}\to (V_{\mathbb{R}})^{\mathbb{C}}$ комплексификация оператора $f_{\mathbb{R}}$. Как связаны между собой:
- а) характеристические многочлены операторов f и F;
- б) собственные числа этих операторов;
- в) собственные векторы этих операторов?
- **Задача 4.** Найдите образ точки A=(1,0,0) в евклидовом пространстве \mathbb{R}^3 при повороте на угол $+\frac{\pi}{2}$ около оси l с направляющим вектором $\mathbf{n}=(1,1,1)$, проходящей через точку B=(0,0,1). (Положительное направление поворота на угол ϕ , $0<\phi\leqslant\pi$, определяется по правилу винта это объяснялось на лекциях.)
- Задача 5. Евклидова плоскость E^2 дополнена до проективной плоскости \mathbb{RP}^2 добавлением бесконечно удаленной прямой l_∞ . Найдите угол между двумя пересекающимися прямыми l_1 и l_2 в E^2 в терминах двойного отношения взятых подходящим образом точек на l_∞ . Как выглядит в этих терминах условие перпендикулярности прямых l_1 и l_2 ? Как записать терминах точек на l_∞ условие того, что коника C в E^2 является окружностью?

Дополнительные задачи к семинару 20

- **Задача 1.** Дана точка в модели Кэли-Клейна. Как с помощью циркуля и линейки построить отвечающую ей точку в модели Пуанкаре в круге?
- Задача 2. Круговой плоскостью называется евклидова плоскость плоскость E^2 с одной добавленной "бесконечно удаленной" точкой ∞ , в которой пересекаются все прямые. Круговым преобразованием, или преобразованием M"eбиуса круговой плоскости называется называется композиция любого числа инверсий (в том числе симметрий относительно прямых). Докажите, что:
- (1) всякое подобие является круговым преобразованием;
- (2) всякое круговое преобразование, сохраняющее точку ∞ , является преобразованием подобия;
- (3) всякое круговое преобразование, не сохраняющее точку ∞ , единственным образом представляется в виде композиции инверсии и подобия.