
Elliptic Functions

Complex Jacobian elliptic functions
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§11.1 Definition of Jacobian elliptic functions in terms of θ.

Recall: Jacobi’s sn(u, k) was defined as the inverse function of

u =

∫ sn(u,k)

0

dz√
(1− z2)(1− k2z2)

.

Exercise of the last section: ∀ elliptic functions = rational function of θ.

Question: How can Jacobian functions be defined by θ?

Answer: v :=
u

πθ200
, k :=

θ210
θ200

,

sn(u, k) := −θ00
θ10

θ11(v)

θ01(v)
, cn(u, k) :=

θ01
θ10

θ10(v)

θ01(v)
, dn(u, k) :=

θ01
θ00

θ00(v)

θ01(v)
.
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• sn(u) defined above has two periods: 2π θ200, π θ200 τ .

Exercise: Check this. (Hint: quasi-periodicity of θ-functions.)

• sn(u) is meromorphic. ⇐= θ’s are entire.

=⇒ sn(u) is an elliptic funtion.

Similarly,

• cn(u) is an elliptic function with periods 2π θ200, π θ200(1 + τ).

• dn(u) is an elliptic function with periods π θ200, 2π θ200τ .
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Let us check that they coincide what we defined before (on R).

• sn(0) = 0, cn(0) = dn(0) = 1 ⇐ θ11(0) = 0 & definitions.

• sn: odd, cn, dn: even ⇐ θ11(u): odd, θab(u): even ((a, b) ̸= (1, 1)).

• sn2 u+ cn2 u = 1, k2 sn2 u+ dn2 u = 1.

Proof:

sn2 u+ cn2 u =
θ200 θ11(v)

2 + θ201 θ10(v)
2

θ210 θ01(v)
2

.

Recall the addition formula (A1):

θ00(x+ u) θ00(x− u) θ200 = θ01(x)
2 θ01(u)

2 + θ10(x)
2 θ10(u)

2

= θ00(x)
2 θ00(u)

2 + θ11(x)
2 θ11(u)

2.

x = v, u = 1+τ
2 =⇒ θ11(v)

2 θ200 = θ01(v)
2 θ210 − θ10(v)

2 θ201.

=⇒ sn2 u+ cn2 u = 1.
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x = v, u = 1
2 in (A1): θ01(v)

2 θ200 = θ00(v)
2 θ201 + θ11(v)

2 θ210.

=⇒ θ410
θ400

θ200 θ11(v)
2

θ210 θ01(v)
2
+

θ201 θ11(v)
2

θ200 θ01(v)
2
= 1, i.e., k2 sn2(u) + dn2(u) = 1.

• d

du
sn(u) = cn(u) dn(u).

Proof:

Chain rule & v =
u

π θ200

=⇒ d

du
sn(u) =

dv

du

d

dv

(
−θ00
θ10

θ11(v)

θ01(v)

)
= − 1

π θ00 θ10

θ′11(v)θ01(v)− θ11(v)θ
′
01(v)

θ01(v)2
.
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Recall the addition formula (A3):

θ11(x+u)θ01(x−u)θ10 θ00 = θ00(x)θ10(x)θ01(u)θ11(u)+θ01(x)θ11(x)θ00(u)θ10(u).

Expand around u = 0 and take the coefficients of u1:(
θ′11(x) θ01(x)− θ11(x) θ

′
01(x)

)
θ00 θ10 = θ00(x) θ10(x) θ01 θ

′
11.

Substitute this into the previous equation (x 7→ v):

d

du
sn(u) = − 1

π θ00 θ10

θ00(v) θ10(v) θ01 θ
′
11

θ00 θ10 θ01(v)2

=
θ201

θ00 θ10

θ00(v) θ10(v)

θ01(v)2
(Jacobi’s derivative formula)

= cn(u) dn(u).
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As we have seen in the real case, the above formulae lead to

d

du
sn(u) =

√
(1− sn2(u))(1− k2 sn2(u)).

=⇒ u =

∫ sn(u)

0

dz√
(1− z2)(1− k2z2)

.

Consistent with the previous definition.
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§11.2 Properties of sn(u, k).

What we know about Jacobi’s funciotns /R:

• periodicity (e.g., period of sn = 4K(k)).

• limits (e.g., sn→ sin when k → 0).

• addition formulae.

can be checked on the basis of the definition by θ.

Because of the lack of time, we prove only the addition formula for sn.

Proofs of other properties are only sketched.
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• Addition formula of sn.

Recall addition formulae (A3) & (A2) of θ’s:

θ11(x+ y)θ01(x− y)θ10θ00 = θ00(x)θ10(x)θ01(y)θ11(y)

+ θ01(x)θ11(x)θ00(y)θ10(y),

θ01(x+ y)θ01(x− y)θ201 = θ01(x)
2θ01(y)

2 − θ11(x)
2θ11(y)

2.

Set u = π θ200 x, v = π θ200 y:

−(ratio of LHS’s)× θ201
θ210

= −θ00
θ10

θ11(x+ y)

θ01(x+ y)
= sn(u+ v).

−(ratio of RHS’s)× θ201
θ210

=
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1− k2 sn(u)2 sn(v)2
,

as was proved before.
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• Limits k → 0, k → 1.

k = k(τ)→ 0 ⇐⇒ τ → i∞.

In this limit: θ11(u, τ) ∼ sinu, θ01(u, τ) ∼ 1, etc. =⇒ sn(u, k)→ sin(u).

k → 1 ⇐⇒ k′ → 0 (k′ :=
√
1− k2).

Modular properties: relations of θab(u, τ) and θa′b′

(
u

τ
,−1

τ

)
.

=⇒


k′ = k′(τ) = k

(
− 1

τ

)
,

sn(iu, k) =
i sn(u, k′)

cn(u, k′)
etc.

=⇒ lim
k→1

sn(u, k) = tanh(u) etc.
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• Periodicity.

Recall: for k =
θ210
θ200

,

x = sn(u) = −θ00
θ10

θ11(
u

πθ200
, τ)

θ01(
u

πθ200
, τ)

inverse←→ u =

∫ x

0

dz√
(1− z2)(1− k2z2)

.

A- & B-periods of the elliptic integral (RHS):

4K(k) = 4

∫ 1

0

dz√
(1− z2)(1− k2z2)

,

2iK ′(k) = 2

∫ 1/k

1

dz√
(1− z2)(1− k2z2)

.

Periods of sn(u) (defined by θ-functions; LHS): 2π θ200, π θ200 τ .
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=⇒ 4ZK(k) + 2Z iK ′(k) = 2Zπ θ200 + Zπ θ200τ.

Or, equivalently, ∃ m1,m2, n1, n2 ∈ Z,

4K(k) = 2m1π θ200 + n1π θ200τ, 2iK ′(k) = 2m2π θ200 + n2π θ200τ.

Theorem:

K(k) =
π

2
θ200, K ′(k) =

π

2i
θ200τ.

Proof is not difficult but lengthy.

We omit it here because of the lack of time.

12


