Elliptic Functions

WeierstralB3 p-function



39.1 Construction of WeierstraBB o-function

Recall that
1. an elliptic function f(u) is holomorphic = constant.

2. A an elliptic function of order 1.

)
one double pole,

== The simplest non-trivial elliptic function has ¢ or

\two simple poles,

in a period parallelogram; ©(u) is the former, sn(u) is the latter.

We have defined p(u) as

? dx
the inverse function of u(z) = / .
o \/4x3 — gox — g3

Here we construct it as a doubly periodic funtion by a series.
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Notations:

e (11,{)y € C: linearly independent over R.
o ' := 70 + 7).

Goal: Construct a “simple” elliptic function with double poles at I'.

An elliptic function f(u) with poles of order n at I' is expanded as:

C

flu) = o

(u —m1Q — maQla)

at u = m1§{y + mofdy €T,

— The simplest candidate of elliptic functions with poles of order n:

1
fn(u) := Z (u — M1 — maQly)"

m1,moEL



Theorem: Assume n = 3.

e The series f,,(u) converges absolutely and uniformly on any compact
set in C T

e f,(u) is an elliptic function with poles of order n at I.

e f,(u): even when n is even, odd when n is odd.

Proof:

K Cc C~\T: compact. -

Dp:={z € C||z| £ R}: a closed disk. (cf. Figure.)”

R: sufficiently large so that K C Dpg.

1
Enough to show: f, p(u) := Z (w =) converges absolutely
QeT, Q¢Dyp
and uniformly on Dg. (fn, = fn.r+ (finite terms).)
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Q
Lemma:
1
1) dM > 0 s.t. (1) < M foru € Dgr, Q el ~ Dsp.
L
1
2) Z T converges for n = 3.
QEF,Q#O’ |

Weierstra3’ M-test = f,, r converges absolutely and uniformly on Dg.

Proof of 2):

r: radius of a disk with centre 0 C parallelogram with vertices {21 &+ {)s.
Q,

(Figure).




Py: I'N (boundary of the parallelogram with vertices £k + £kQ3).

(Figure)

Py
[ 3

—
1 - 1 - 1 8 v |1
= < 8k = — :
Z |Q‘n Z Z |Q‘n Z fev e m rn Z fen—1
Qel, Q0 k=1QePy k=1 k=1
which converges when n = 3. (dLemma 2)



The second statement of the theorem <= the first:

e each summand in f,, is holomorphic in C \ I

— f, is holomorphic in C \ T'. (WeierstraB’ theorem).

o (w— Q) has a pole of order n at 2 € I.

The third statment:

1 _1)n
fn(_u) — Z (_u - Q)n — Z (u(_ gz/)n — (_1)nfn(u)

[ ITheorem

1 _ .
However, Z P diverges! = Theorem is not true for n = 2.
QGF,Q#O‘ |

Need “correction” to each summand.
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Theorem: The series

Qel’,

e converges absolutely and uniformly on any compact set in C \\ T'.
e gives an even elliptic function with poles of order 2 at I.
Namely,

@(u) is an elliptic function of order 2: WeierstraBB’ p-function.

Proof:

1
We know: fs(u) = Z (0= Q) is an elliptic function.

Qel

|dea: Integrate f3 to get !



Integrate fs3(u)

. . 1
without the first term — from O:
U

Qel'~ {0}
= > /o e _19)3 dv (<= uniform convergence)
Qel'~\{0}
S L 1
B (u—Q)2 Q2
Qer~{0}

“ 1
o p(u) =— — 2/0 (fg(v) — ﬁ) dv: meromorphic with poles at I



e Evenness:

Qel'~{0}
1 1 1
-+ Y (arap— =)
2 2 2
¢ Qer~{0} (u+9Q) )
1 1 1
2+ Y (o) e @
Q' el {0}

e Periodicity:
f3(u): elliptic function
— @' (u+ Q1) = ¢ (u), o' (u+ Q) = ¢ (u).

— dC1, Cf: p(u—kﬂl):p( )—I—Cl p(u—l—ﬂz):p( )—|—Cz.

Qz’ Qz Qz o: even
. . o Y 0
Setting u = > Ci=¢p (—2 ) © ( - )
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e Other properties of p(u).

Laurent expansion:

_<(2n—|—1) Z qulfz+2 (n #£0).

\ Qel'~{0}

: 1 1
By convention: go := 20cy = 602 o gs := 28c4 = 140 Z 6
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With these notations,

w10 7
Hence,
4 292 1 4gs
/ 2

= — — O

4 3921  3g3
—4 S _ — O

1
g2 p(u) = 925 + O(u?)

Summing up,
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o (u)? — 4p(u) + g2 p(u): elliptic function with possible poles at I".
—g3 + O(u): no pole at 0.

— ©'(u)? — 4p(u) + go p(u): elliptic function without poles = constant.
Namely, ©'(u)? — 4p(u) + g2 p(u) = —gs, or,

o' (u)? = 4p(u)® — g2 p(u) — g3.

This gives the equivalence of definitions:

dp
Va9P — g2 — g3
Integrate from u = 0 (<> p(u) = 00) to u (<> p(u)):

/@(u) dz
U = .
o /423 — goz — g3

— p(u) is the inverse function of the elliptic integral!

dg
du

— \/4@3 — g2 0 — g3, i.e., du =
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In fact,
W:C/T2urs (p(u), o (u)) €R

iIs the inverse of the Abel-Jacobi map AJ.

R: the elliptic curve = compactification of {(z,w) | w? = 423 — g5 2z — g3}.

Exercise: Prove the bijectivity of W as follows:

(i) Show that W is holomorphic even at u = 0 as a map to R.
(II) Show that p/(QZ/Q) =0fori=1,2,3 (Qg = + QQ)

(iii) Show the bijectivity.
(

Hint: p(u) is of order 2, i.e., takes any value € P! twice on C/T".)

Exercise: Prove that any elliptic function f(u) with period I' is expressed

as follows:

f(u) = Ri(p(u)) + Ra(p(u)) ' (u), Ry, Ry : rational functions.
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39.2 Addition formulae of the @-function

Elliptic curve =2 C/I" has an additive group structure:
uymodI' +uo mod I’ = u; +uo mod I'.

—> addition formulae of elliptic functions.

Theorem (Addition formula of p).

If uy +us +u3 =0 (or =0 mod I'),

(Note: o'(u3) = —¢'(u1 + u2), pus) = p(u1 + uz).)
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Proof:

May assume @(u1) # p(us2).

(= analytically continued to all values afterwards.)
(a,b): a solution of
ap(u1) +b = ¢ (u1),
ap(uz) +b = p'(uz).
Explicit formulae (not used in the proof, used in the exercise):

o' (u1) — ' (up) p — Plu)p (u) — ' (ur)p(uz)
p(ur) — p(uz) p(ur) — p(uz) |
f(u) := ¢@'(u) — ap(u) — b: an elliptic function of the third order, because

a =

e linear combination of elliptic functions.
e a third order pole (that of ¢'(u)) at u = 0.
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— d three points, at which f = 0.

We know two of them: f(u1) = f(uz) = 0. Let us call the third one uyg.
By the general theorem for elliptic functions:
uo + u1 + uo = (sum of poles) =0 mod T.

— ug =ug mod I, i.e., f(uz) =0.

—a | # 0 = The matrix is degenerate, i.e., det = 0.
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Corollary:

o(u1 + u2) = —p(ur) — p(us) + %

(i)

Proof: Exercise.

Hint: w1, us and usg satisfy

@/(U) — 4@(“)3 — g2p(u) — g3, ga’(u) = ap(u) + b.

— p(u1), p(u2) and p(us) satisfy a cubic equation.

Remark: The addition formula has a geometric interpretation.

(cf. Exercise.)
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