Дискретная математика І 2018, матфак ВШЭ

Семинар 1

Необходимым условием сдачи темы являются: сдача письменной части домашнего задания и 8 задач из листка. Задача засчитывается при сдаче всех ее пунктов.

Задача 1. Докажите тождества:

- a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$;
- b) $A \setminus (B \cup C) = (A \setminus B) \setminus C$.

Задача 2. Сколько различных выражений для множеств A, B, C можно составить с помощью операций ∩, ∪, и \? (Выражения считаются одинаковыми, если они верны при всех значениях переменных, например $A \setminus (B \cap C)$ и $A \setminus (A \cap B \cap C)$ — одинаковы.);

Задача 3. Представьте на числовой прямой множества:

- a) $[1,3] \cup (2,4)$;
- b) $[-1,1)\Delta(0,+\infty)$.

Задача 4. Представьте на декартовой плоскости множества:

- a) $\{1,2\} \times \{3,4\}$;
- b) $[-4, -5] \times \{12\}.$

Задача 5. Пусть A — множество решений уравнения f(x) = 0, а B — множество решений уравнения g(x) = 0 (всё — в \mathbb{R}). Выразите через A и B множество решений уравнения:

- a) $f(x) \cdot g(x) = 0$; b) $(f(x))^2 + (g(x))^2 = 0$.

Задача 6. На острове 2/3 всех мужчин женаты и 3/5 всех женщин замужем (все браки — моногамные). Какая доля населения острова состоит в браке?

Задача 7. Решите систему $\begin{cases} A\setminus X=X\setminus B\\ X\setminus A=C\setminus X \end{cases} \quad (A,B,C\ -\ \text{известны, нужно найти}$ X).

Задача 8. У скольких отображений множества $\{a,b,c\}$ в себя существует обратное отображение?

Задача 9. Пусть $g(x) = \frac{2x}{e^x}$, $h(x) = \sin(x + \operatorname{tg} x)$. Запишите $(g \circ h)(x)$ и $(h \circ g)(x)$. Совпадают ли эти функции?

Задача 10. Исследуйте на инъективность и сюръективность функции:

- a) $f:(0,+\infty)\to\mathbb{R}, \quad f(x)=\log_3 x + 7x;$ b) $f:\mathbb{R}\to[-11,+\infty], \quad f(x)=x^2+6x-2;$
- c) $f: \mathbb{Z} \to \mathbb{Z}$, f(x) = 2x 5;

Задача 11. Известно, что $q \circ h$ инъективна.

- а) Можно ли утверждать, что q инъективна?
- b) Можно ли утверждать, что h инъективна?

Домашнее задание 1

Все задания к следующему семинару. Задания 1, 2, 3 сдаются письменно.

Задача 1. Докажите тождества:

- a) $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.
- b) $A \setminus (A \setminus B) = A \cap B$.

Задача 2. Представьте на числовой прямой множество $(1,12) \setminus [3,4]$.

Задача 3. Представьте на декартовой плоскости множество $[0,1] \times (-\infty,-1]$.

Задача 4. Каждый десятый математик — шахматист, а каждый шестой шахматист — математик. Кого больше — математиков или шахматистов и во сколько раз?

Задача 5. Исследуйте на инъективность и сюръективность функции:

- a) $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x 5;
- b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = 4\sin x x^2$;
- c) $f: \mathbb{Z} \to \mathbb{Z}$, $f(x) = x^3 x + 1$;

Листок 1

Задача 1. Докажите тождество: $A \cap (B \setminus C) = (A \cap B) \setminus C$.

Задача 2. Представьте на числовой прямой множество $[1, 12] \cap (3, 14)$.

Задача 3. Представьте на декартовой плоскости множество $[1,2] \times (3,4)$.

Задача 4. Известно, что доля блондинов среди голубоглазых больше, чем доля блондинов среди всех людей. Что больше — доля голубоглазых среди блондинов или доля голубоглазых среди всех людей?

Задача 5. Решите систему $\begin{cases} A \cup X = B \cap X \\ A \cap X = C \cup X \end{cases}$ (A, B, C – известны, нужно найти X).

Задача 6. У скольких отображений множества $\{k, l, m, n\}$ в себя существует обратное отображение?

Задача 7. Пусть |A| = a, |B| = b.

Сколько существует отображений $A \to B$?

А сколько существует инъективных отображений $A \to B$?

Задача 8. Пусть $g(x) = x^2 + 3\sqrt{x}$, $h(x) = \log_2 \frac{x}{x-1}$. Запишите $(g \circ h)(x)$ и $(h \circ g)(x)$. Совпадают ли эти функции?

Задача 9. Исследуйте на инъективность и сюръективность функции:

- (1) $f: \mathbb{R} \to \mathbb{R},$ $f(x) = x^3 x + 1;$ (2) $f: \mathbb{R} \to \mathbb{R},$ $f(x) = -e^x 3;$ (3) $f: \mathbb{Z} \to \mathbb{Z},$ $f(x) = \lfloor \sqrt{|x|} \rfloor \cdot (-1)^x;$

Задача 10. Пусть $f = g \circ h$.

- а) Докажите, что если g и h инъективны, то и f инъективна.
- b) Докажите, что если q и h сюръективны, то и f сюръективна.

Задача 11. Известно, что $q \circ h$ сюръективна.

- а) Можно ли утверждать, что g сюръективна?
- b) Можно ли утверждать, что h сюръективна?

Задача 12. * Сколько различных выражений для множеств A_1, \ldots, A_4 можно составить с помощью операций ∩, ∪, и \?