Комбинаторика

Листок считается сданным, если решено не менее восьми задач. Каждый пункт учитывается как отдельная задача. Каждая задача, помеченная звёздочкой, учитываются как две.

- **Задача 1**. Найдите максимальный коэффициент, возникающий после раскрытия скобок и приведения подобных слагаемых в $(a+b+c)^5$.
- Задача 2. Сколькими способами можно разбить 14 человек на пары?
- **Задача** 3. Сколько диаграмм Юнга 1 можно уместить в прямоугольнике $m \times n$ так, чтобы диаграмма и прямоугольник имели общий левый верхний угол?
- Задача 4. Есть 4 попарно отличающиеся друг от друга чашки, 4 неразличимых стакана, 10 одинаковых кусков сахара и 7 попарно разноцветных соломинок. Сколькими способами можно разложить а) соломинки по чашкам б) сахар по чашкам в) сахар по стаканам \mathbf{r}^*) соломинки по стаканам.
- Задача 5. Дайте чисто комбинаторные доказательства соотношений

a)
$$\sum_{k=0}^{n} {n \choose k} {n \choose n-k} = {2n \choose n}$$
 6)
$$\sum_{r=0}^{n} {n-r-1 \choose k-r} = {n \choose k}.$$

- Задача 6. Сколько имеется а) возрастающих б) неубывающих в) инъективных г) сюрьективных неубывающих π^* сюрьективных отображений $N \to M$ между линейно упорядоченными множествами из n и m элементов?
- **Задача** 7. Сколько в первом миллионе натуральных чисел таких, которые не являются ни квадратом, ни четвертой степенью целого числа?
- Задача 8. Три фигуры площади 1 каждая лежат внутри фигуры площади 2. Найдите минимальное значение наибольшей из площадей попарных пересечений этих трёх фигур.
- Задача 9. Пусть $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$, где $\alpha_i, p_i \in \mathbb{N}$ и все p_i просты и попарно различны. Найдите а) количество всех свободных от квадратов² делителей б^{*}) сумму всех делителей числа n.

Задача 10 (числа Каталана).

- а) Установите явные биекции между следующими множествами:
 - (1) неубывающие пути, ведущие по линиям клетчатой бумаги из точки (0,0) в точку (n,n) и лежащие не выше прямой y=x
 - (2) допустимые расстановки n пар скобок в произведении $a_0 \cdot a_1 \cdot a_2 \cdot \cdots \cdot a_n$, позволяющие выполнить все n умножений последовательно
 - (3) бинарные корневые деревья с n + 1 листьями³
 - (4) триангуляции выпуклого (n + 2)-угольника не пересекающимися нигде кроме вершин диагоналями.
- б) Выразите число⁴ элементов в них через подходящий биномиальный коэффициент.

¹С учётом пустой диаграммы.

 $^{^{2}}$ Т. е. не делящихся на отличные от единицы квадраты натуральных чисел.

 $^{^{3}}$ Т. е. связными графами без циклов с n+2 вершинами валентности 1, одна из которых отмечена, и всеми остальными вершинами валентности 3.

 $^{^4}$ Оно называется n-тым числом Каталана и обозначается c_n .

(напишите свои имя, отчество и фамилию)

№	дата	кто принял	подпись
1			
2			
3			
4a			
б			
В			
Г			
5a			
б			
6a			
б			
В			
Г			
Д			
7			
8			
9a			
б			
10a			
б			