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Topology studies the most simple, whence the most fundamental proper-
ties of geometric objects. Its results are widely used in all the other domains
of mathematics, in contemporary physics, and have applications to chem-
istry and biology. The following topics are to be considered in the lecture
course:

• Topological spaces, continuous mappings, connectedness, compactness

• Fundamental groups and coverings

• Homology of simplicial complexes

• Morse theory

• Poincaré duality and multiplication in cohomology

Application of topological results require a lot of computations, and
many problems will be discussed on the seminars and in the course of home-
work.



Chapter 1

Reminder: topological
spaces, continuous
mappings, examples.
Properties:
connectedness,
compactness
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In this chapter we recall main definitions and give examples of topolog-
ical spaces we are going to work with during the lecture course.

1.1 Topological spaces

Definition 1.1 Let X be a set. A topology T on X is a subset T ⊂ 2X of
the set of all subsets of X satisfying the following axioms:

• the empty set ∅ and X itself belong to T ;

• the intersection U ∩ V of any two sets U, V ∈ T also is an element
of T ;

• the union ∪i∈IUi of any family I of sets in T also is an element of T .

Such a pair (X, T ) is called a topological space.

A given set X can have many different topologies (finitely many, in fact,
if X is finite). The elements of a topology T on a set X are also called
open subsets of X (for a given topology T ). This allows one to rewrite the
axioms of topology in the following way:

• the empty set ∅ and X itself are open;

• the intersection of any two open sets also is open;

• the union of any family of open sets is open.

For a point x ∈ X, any open set U containing x is called a neighborhood
of x.

Complements of open sets in a given topological space (X, T ) are called
closed sets. Hence, there is a one-to-one correspondence between the set of
open and the set of closed sets in a given topological space (X, T ).

Exercise 1.2 Duality between open and closed sets in a topological space
gives a hint that axioms of topology can be written down in terms of the set
of closed sets. Do that.

Definition 1.3 A subset B ⊂ T of a topology T ⊂ 2X is called a base of
the topology T if any open set can be represented as the union of a family
of subsets in B.
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The notion of base of a topology simplifies defining topologies: instead
of describing all open sets, it suffices to describe some base. Note, however,
that not each subset B of subsets of X can serve as a base of a topology.

Exercise 1.4 Prove that a set B of subsets in X is a base of a topology
on X iff the union of the sets in B coincides with X (that is, any point of X
belongs to some element of B), and the intersection of any two elements
in B admits a representation as a union of subsets in B.

1.2 Examples

Topological spaces can be very complicated. However, as usual, simple
topological spaces are most useful ones, and in our lectures we will restrict
ourselves with rather simple instances of topological spaces. Nevertheless,
examples given in the present section by no means exhaust the complete
list of examples.

Example 1.5 1. If X consists of a single point, then, because of the
first axiom, there is only one possible topology on X.

2. For any finite set X, we can introduce the discrete topology on X.
This topology consists of all subsets in X.

3. The subsets {∅, {1}, {1, 2}} form a topology on X = {1, 2}.

Exercise 1.6 1. Enumerate all topologies on a 2-point set.

2. Enumerate all topologies on a 3-point set.

Example 1.7 1. The line R, the base of a topology given by all open
intervals, is a topological space.

2. The plane R2, the base of a topology given by all open discs, is a
topological space.

3. The Euclidean space Rn of arbitrary dimension n, the base of a topol-
ogy given by all open balls, is a topological space.

4. Any metric space, the base of a topology given by all open balls, is a
topological space.



Examples 8

5. The Zariski topology in Rn is defined in the following way: the closed
sets are common zeroes of finite tuples of polynomials, p1(x1, . . . , xn) =
0, . . . , pN (x1, . . . , xn) = 0.

Recall that a metric space (X, ρ) is a set X endowed with a metric ρ,
that is, a function ρ : X ×X → R satisfying the axioms of a metric:

• ρ(x, y) ≥ 0 for all x, y ∈ X, and ρ(x, y) = 0 iff x = y;

• ρ(x, y) = ρ(y, x) for all x, y ∈ X;

• ρ(x, y) + ρ(y, z) ≥ ρ(x, z) for all x, y, z ∈ X (the triangle inequality).

The open ball of radius r centered at x0 ∈ X is the set of points y ∈ X
such that ρ(x0, y) < r.

Statement 1.8 Let (X, T ) be a topological space, and let Y ⊂ X be a
subset. Define the set T |Y ⊂ 2Y as the set consisting of intersections of
open sets in X with Y , T |Y = {U ∩ Y |U ∈ T }. Then the pair (Y, T |Y ) is a
topological space.

The topology T |Y is called the induced topology on the subspace Y of
the topological space (X, T ). All subsets of Euclidean spaces are endowed
with induced topology. In particular, this is true for algebraic (given by
polynomial equations) or smooth (given by smooth independent equations)
submanifolds. A standard example of such submanifolds are unit spheres
Sn−1 ⊂ Rn given by the equation x21 + · · · + x2n = 1. Below, we will not
specify explicitly topology induced by Euclidean spaces on their subspaces.

Exercise 1.9 Let X be a metric space, and let Y be a subset in it. Prove
that the topology on Y induced by the topology in X coincides with the
topology associated to the metric on Y induced from that on X.

Exercise 1.10 Prove that the Zariski topology in R1 indeed is a topology.
Show that it does not coincide with the Euclidean topology.

Example 1.11 A finite graph is a pair (V,E) of finite sets V,E (the set
of vertices and the set of edges) together with a mapping taking each edge
to a pair of (not necessarily distinct) vertices (the ends of the edge). Each
graph can be made into a topological space (the topological graph) obtained
by taking a segment for each edge and gluing together the ends of segments



Continuous mappings 9

with a common end into a single point (a vertex). This description uniquely
describes the topological graph up to homeomorphism.

We will also need infinite graphs, where either the set of vertices, or the
set of edges, or both are infinite.

Exercise 1.12 Describe formally the topology of a finite topological graph
(meaning that you must say what is the underlying point set and what are
the open subsets in it).

Example 1.13 In addition to real submanifolds in Euclidean spaces we will
also consider complex submanifolds (those given by equations with complex
coefficients) in complex vector spaces. They can be considered as special
cases of real submanifolds, but is is more convenient to think of them as
about a separate species.

1.3 Continuous mappings

Definition 1.14 A mapping f : X → Y of a topological space (X, TX)
to a topological space (Y, TY ) is said to be continuous (with respect to the
topologies TX , TY ) if the preimage f−1(W ) ⊂ X of any open subset W ∈ TY
in Y is an open subset in X, f−1(W ) ∈ TX .

A mapping is a homeomorphism if it is continuous and its inverse also
is continuous.

Note that the notion of continuity of a mapping depends on the choice
of topologies on both its source and its target. A mapping can be a home-
omorphism only if it is one-to-one (but this requirement is not sufficient).

Exercise 1.15 1. Enumerate all topologies on a 2-point set up to home-
omorphism (that is, we consider two topologies different iff the corre-
sponding topological spaces are not homeomorphic to one another).

2. Enumerate all topologies on a 3-point set up to homeomorphism (that
is, we consider two topologies different iff the corresponding topological
spaces are not homeomorphic to one another).

Exercise 1.16 Prove that any two intervals (a, b) in R are homeomorphic
to one another. Prove that any two segments [a, b] in R are homeomorphic
to one another.
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1.4 Properties of topological spaces

Definition 1.17 A topological space X is said to be connected if it cannot
be represented as a disjoint union of two open subsets, none of which is
empty.

Exercise 1.18 Prove that any topological space X admits a representation
as a disjoint union of maximal connected subspaces, and this representation
is unique. (A connected subspace of X is maximal if any subspace containing
it is not connected.)

A connected subset of X entering such a representation, that is, a max-
imal connected subset of X, is called a connected component of X.

Exercise 1.19 Prove that any connected component of a topological space
is closed.

Definition 1.20 A topological space X is said to be path connected if for
any two points x0, x1 ∈ X there is a continuous mapping γ : [0, 1] → X
such that γ(0) = x0, γ(1) = x1.

Exercise 1.21 Prove that if a topological space X is path connected, then
it is connected.

Exercise 1.22 Prove that any topological space X admits a representation
as a disjoint union of maximal path connected subspaces, and this repre-
sentation is unique. (A path connected subspace of X is maximal if any
subspace containing it is not path connected.)

A subset of X entering such a representation, that is, a maximal path
connected subset of X, is called a path connected component of X.

Exercise 1.23 Give an example of a topological space having a path con-
nected component of a topological space that is not closed.

Exercise 1.24 Using the notion of connectedness, prove that the interval
(0, 1) is not homeomorphic to any ball in Rn, for n ≥ 2.

Definition 1.25 A topological space X is said to be compact if any cover-
ing of X by open sets, X = ∪i∈IUi, admits a finite subcovering.
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Exercise 1.26 Prove that

1. the closed segment [0, 1] is compact;

2. the open interval (0, 1) is not compact;

3. a subset of an Euclidean space is compact iff it is bounded and closed;

4. a finite topological graph is compact.

Exercise 1.27 Prove that the image of a compact topological space under
a continuous mapping is compact.



Chapter 2

Quotient spaces modulo
equivalence relations,
quotient spaces modulo
group actions. Product,
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12



Constructing new topological spaces 13

In this chapter we recall ways of constructing new topological spaces
from given ones.

2.1 Cartesian product

Let (X, TX) and (Y, TY ) be two topological spaces. The product topology
on the Cartesian product X × Y is given by its base, which consists of the
products U ×V , where U ∈ TX and V ∈ TY are open subsets in the factors.

Exercise 2.1 Show that the topology on the Euclidean space Rn coincides
with the product topology in R × · · · × R (that is, the base of coordinate
parallelepipeds produces the same topology as the base of balls).

Exercise 2.2 Prove that the product of two compact topological spaces is
compact.

2.2 Quotient spaces

Definition 2.3 Let X be a topological space and let A ⊂ X be its subset.
The topological space X/A obtained from X by contracting A to a point is
constructed as follows:

• the points in X/A are the points X \A and an additional point, which
we denote by a, X/A = (X \A) t {a};

• the open sets in X/A are (i) those open sets in X that do not inter-
sect A; (ii) for each open set U in X containing A, the set (U \A)∪{a}.

This topology is called the quotient topology on X/A.

Exercise 2.4 Show that the quotient topology is indeed a topology on X/A.

Example 2.5 • Setting A = {0, 1} in X = [0, 1] we obtain X/A = S1,
the circle.

• Take several circles S1, X = tS1, and pick a point in each circle.
Contracting these points to a single point we obtain a bucket of circles.
A bucket of circles can be considered as a topological graph with a
single vertex.
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• Take the sphere S2 in R3 and contract the North and the South pole
to a single point.

Exercise 2.6 Prove that contracting the boundary sphere of the closed unit
ball Bn ⊂ Rn to a point we obtain the sphere Sn.

Contracting a subspace to a point can be easily extended to a more
general notion of quotient topology modulo arbitrary equivalence relation.

Definition 2.7 Let (X, T ) be a topological space and let ∼ be an arbitrary
equivalence relation on X. Denote by X/ ∼ the set of equivalence classes
of ∼ on X. Introduce topology T / ∼ on X/ ∼ in the following way: a
set U ⊂ (X/ ∼) is said to be open if the union of the equivalence classes
belonging to U is an element of T . This topology is called the quotient
topology on X/ ∼.

Theorem 2.8 For any equivalence relation ∼ on a topological space (X, T )
the quotient topology T / ∼ indeed is a topology on X/ ∼. The mapping
X → X/ ∼ taking each element of X to its equivalence class modulo ∼ is
continuous.

The quotient space modulo an equivalence relation is often referred to as
the result of contracting each equivalence class to a point. Below, when de-
scribing equivalence relations, we will specify only those equivalence classes
that differ from a single point.

Example 2.9 • Let X be a topological space, and let A1, A2, . . . , An
be a tuple of pairwise disjoint subsets in X, Ai ⊂ X, Ai ∩ Aj = ∅
for i 6= j. Then we can introduce the equivalence relation ∼ on X by
setting x ∼ y iff y = x or x and y both belong to the same set Ai. Then
X/ ∼ is the topological space obtained by contracting each subset Ai
to a point, X/ ∼= (. . . (X/A1)/ . . . An).

• A topological graph can be interpreted as an instance of the above
construction. Indeed, take for X a disjoint union of segments [0, 1],
one for each edge of the graph. For each vertex v of the graph, take a
subset Av in X consisting of the ends of the segments incident to the
vertex v, one end for each incidence. Then the quotient topological
space is the desired topological graph.



Constructing new topological spaces 15

• Take the square X = [0, 1]× [0, 1] and introduce the equivalence rela-
tion by identifying [0, y] ∼ [1, y], y ∈ [0, 1]. The quotient space X/ ∼
is the (closed) cylinder.

• The equivalence relation [0, y] ∼ [1, 1 − y], y ∈ [0, 1] on the square
X = [0, 1] × [0, 1] produces the (closed) Möbius band as the quotient
space X/ ∼.

• The equivalence relation [0, y] ∼ [1, y], [x, 0] ∼ [x, 1], x ∈ [0, 1], y ∈
[0, 1] on the square X = [0, 1]× [0, 1] produces the torus.

The last example can be generalized as follows. Consider a finite set
of polygons, which can be assumed to be regular polygons with edges of
length 1. Identify each edge of each polygon with the segment [0, 1] in
either of the two ways. Splitting edges of the polygons in pairs and gluing
together edges of the same pair (identifying a point x on one edge to the
same point on the other edge), we obtain a two-dimensional surface. This
surface is closed if all the edges are split in pairs, and it is a surface with
boundary provided some of the edges remain unpaired.

Exercise 2.10 Prove that the quotient of a compact topological space with
respect to an arbitrary equivalence relation is compact.

2.3 Group actions

Let G be a group acting on a topological space (X, T ) by homeomorphisms.
This means that a homomorphism G → Homeo(X) of G to the group
of homeomorphisms of X is given. Such an action defines an equivalence
relation on X: two points x1, x2 ∈ X are equivalent, x1 ∼ x2, if there is
an element g ∈ G such that g(x1) = x2, that is, if they belong to the same
orbit of the G-action. The quotient space modulo this equivalence relation,
which in this case is denoted by X/G, is endowed with the quotient topology
T /G. The points of X/G are the orbits of the action of G.

Example 2.11 1. Let the group Z2 of residues modulo 2 act on the
circle X = S1 (thought of as the unit circle on the Euclidean xy-plane)
so that the generator of the group acts as the reflection through the x-
axis. Then the quotient S1/Z2 is the closed semicircle (homeomorphic
to the segment [0, 1]).
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2. A cyclic group Zn = Z/nZ acts on the circle S1 so that the generator
acts by rotating the circle by the angle 2π/n. The quotient space
S1/Zn is homeomorphic to the circle once again.

3. The group of integers Z acts on the line R1: the generator shifts it
by 1, x 7→ x+ 1. The quotient space is the circle, S1 = R1/Z.

4. The group Z×Z acts on the plane R2: the two generators shift it by 1
along the x- and the y-axes, x 7→ x+1, y 7→ y+1. The quotient space
is the product of two circles, S1 × S1 = R2/Z× Z, i.e. the torus.

5. For any integer n the group Z2 acts on the unit sphere Sn−1; the action
is generated by the central reflection (x1, . . . , xn) 7→ (−x1, . . . ,−xn)
of the ambient space Rn. The quotient space Sn−1/Z2 modulo this
action is called the real projective space and is denoted by RPn−1.

6. The group S1 acts on the plane R2 by rotations. The quotient space
R2/S1 is the half-line R≥0 = {x|x ≥ 0} ⊂ R.

7. The (2n − 1)-dimensional unit sphere S2n−1 ⊂ R2n can be consid-
ered as a subspace in the complex vector space Cn = R2n. The
circle group S1 acts on this vector space by ϕ : (z1, . . . , zn) 7→
(e2iϕz1, . . . , e

2iϕzn), and this action preserves the sphere. The quo-
tient space S2n−1/S1 is called the complex projective space and is
denoted by CPn−1. In particular, for n = 2, we have the quotient
space S2 = CP1 = S3/S1.

8. A similar action of the group S3 of unit vectors in the space of quater-
nions on the sphere S7 considered as the unit sphere in the plane over
quaternions leads to the quotient space S4 = S7/S3.

9. A hyperelliptic curve is a subset in CP1 × CP1 given by an equation
of the form y2 = P (x), for a polynomial P (of degree at least 5).
The hyperelliptic involution acts on this curve by taking a point with
coordinates (x, y) to (x,−y). This action generates an action of the
group Z2 on the hyperelliptic curve. The quotient modulo this action
is naturally identified with the complex projective line CP1 = S2 of
coordinate x.

Exercise 2.12 1. The multiplicative group R∗ of nonzero real numbers
acts on the Euclidean space Rn by multiplying coordinates by a con-
stant. Show that the quotient space of the complement to the origin
(Rn \ {0})/R∗ is homemorphic to the projective space RPn−1.
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2. The multiplicative group C∗ of nonzero complex numbers acts on the
Euclidean space Cn by multiplying coordinates by a constant. Show
that the quotient space of the complement to the origin (Cn \ {0})/C∗
is homemorphic to the projective space CPn−1.

3. What will be the quotient topological space in the previous cases if we
do not puncture the origin from the Euclidean space before taking the
quotient?

2.4 Cone, suspension, join, and gluing of topo-
logical spaces by a mapping

Definition 2.13 Let X be a topological space. Its cone CX is defined as
the quotient space (X×[0, 1])/ ∼, where the equivalence relation ∼ identifies
all the points on the top of the product, (x1, 1) ∼ (x2, 1) for all x1, x2 ∈ X.

Definition 2.14 Let X be a topological space. Its suspension SX is de-
fined as the quotient space (X× [0, 1])/ ∼, where the equivalence relation ∼
identifies all the points on the top, and all the points on the bottom of the
product (x1, 0) ∼ (x2, 0) and (x1, 1) ∼ (x2, 1) for all x1, x2 ∈ X.

Example 2.15 The suspension of a sphere is a sphere, SSn−1 = Sn.

Definition 2.16 Let X,Y be topological spaces. Their join X?Y is defined
as the quotient space (X × [0, 1]× Y )/ ∼, where the equivalence relation ∼
identifies points on the top, and points on the bottom of the product in
the following way: (x, 0, y1) ∼ (x, 0, y2) and (x1, 1, y) ∼ (x2, 1, y) for all
x, x1, x2 ∈ X, y, y1, y2 ∈ Y .

Example 2.17 The join [0, 1] ? [0, 1] of two segments is the 3-simplex.

Definition 2.18 Let X,Y be topological spaces, let A ⊂ X be a subspace
in X, and let f : A → Y be a continuous mapping. The result of gluing
of X to Y along f is defined as the quotient space (X t Y )/ ∼, where the
equivalence relation ∼ identifies each point a ∈ A with f(a) ∈ Y (which
means, in particular, that all the points in A that are taken by f to the
same point are identified with one another).
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Example 2.19 If f is a homeomorphism of the boundary circle S1 of the
unit closed disk X = B2 to the boundary circle of another copy Y = B2 of
the disk, then the result of gluing of X and Y along this homeomorphism
is the 2-sphere S2.
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In this chapter we introduce the notion of simplicial complex and give
representations of certain topological spaces as simplicial complexes.

3.1 Simplices and simplicial complexes

The n-dimensional simplex ∆n is the subspace in Rn+1 consisting of points
with all nonnegative coordinates (x1, . . . , xn+1) satisfying the linear equa-
tion x1 + · · ·+xn+1 = 1. Thus, the 1-dimensional simplex is a segment, the
2-dimensional segment is a triangle, the 3-dimensional simplex is a tetrahe-
dron, and so on. By setting some of the coordinates xi = 0, we obtain a
face of the simplex. Each face of the simplex is a simplex itself.

A simplicial complex is a topological space obtained from several sim-
plices by identifying some of their faces of the same dimension. If the ver-
tices of each simplex are numbered, then the identification map is uniquely
specified by a one-to-one correspondence between the sets of numbers of
the corresponding faces. Moreover, a mapping from a set of vertices of a
simplicial complex to the set of vertices of another simplicial complex deter-
mines a continuous mapping of two complexes provided the images of the
vertices of any simplex in the preimage span a simplex in the image: one
just extends such a mapping to each simplex linearly. Such a mapping is
called a simplicial mapping.

We will usually consider finite simplicial complexes, but at some point
infinite complexes will become necessary. A simplicial complex homeomor-
phic to a given topological space X is called a simplicial decomposition
of X.

Example 3.1 The sphere S2 can be represented as a simplicial complex
in many different ways. Thus, the surface of the tetrahedron is a simplicial
complex homeomorphic to the sphere. This complex consists of four 2-
simplices (triangles), each glued to the other three triangles along a single
edge.

Replacing the tetrahedron with the octahedron or the icosahedron we
obtain different simplicial decompositions of the sphere.

Of course, simplicial decompositions of the sphere do not come neces-
sarily from regular polyhedra.

Example 3.2 Any graph naturally is a simplicial complex.
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The dimension of a simplicial complex is the largest dimension of the
simplices forming this complex. Graphs are simplicial complexes of dimen-
sion 1, the simplicial complexes homeomorphic to the sphere S2 have di-
mension 2.

Exercise 3.3 Find a simplicial decomposition of

1. the projective plane RP2;

2. the complex projective plane CP2;

3. the 3-dimensional sphere S3

Exercise 3.4 Construct a simplicial decomposition of a product ∆i×∆j of
two simplices. Use this construction to construct simplicial decompositions
of tori Tn = (S1)n.

3.2 Two-dimensional surfaces

The definition of a 2-dimensional surface as the result of gluing regular
polygons along mappings identifying certain pairs of their edges gives an
immediate tool for constructing simplicial decompositions of the surfaces.
Indeed, for this purpose it suffices to pick a triangulation of each polygon
by pairwise nonintersecting diagonals.

Exercise 3.5 Prove that if f : S1 → S2 is a homeomorphism of surfaces,
then f takes boundary points of S1 to boundary points of S2.

Exercise 3.6 Let X be the topological space obtained by identifying the
North and the South pole of the 2-sphere S2. Find a simplicial decomposition
for X.

Exercise 3.7 Take a square. There are two ways to glue in pair two op-
posite edges of the square, one producing the cylinder, the other one the
Möbius band. Construct a simplicial decomposition for both. Prove that the
cylinder and the Möbius band are not homeomorphic to one another.

Definition 3.8 A 2-dimensional surface is said to be nonorientable if it
contains a subspace homeomorphic to the Möbius band. Otherwise it is
said to be orientable.



Graphs, surfaces, simplicial complexes 22

Exercise 3.9 How many different closed surfaces can be obtained from the
square by gluing its edges in pairs? How many of them are nonorientable?

3.3 Standard models for closed 2-dimensional
surfaces

In this section we classify, up to homeomorphism, 2-dimensional surfaces
that can be glued out of finitely many polygons. We define a standard
model for such a surface, and show that each surface is homeomorphic to
some standard model. Then we show that surfaces with different standard
models are not homeomorphic to one another.

If the result of gluing a tuple of polygons is a connected surface, then the
same surface can be obtained by gluing in pairs edges of a single polygon.
This can be easily seen by successively attaching the polygons to the original
one. Therefore, when solving the topological classification of closed surfaces
problem we can assume without loss of generality that each such surface is
glued out of a polygon with an even number of edges. The resulting surface
is nonorientable iff there is a pair of edges in the polygon glued “with the
reversed orientation”.

Theorem 3.10 Each closed orientable 2-dimensional surface can be ob-
tained from a single 4g-gon by gluing its edges in the order aba−1b−1cdc−1d−1 . . . .
In other words, each closed orientable surface is either a sphere or a con-
nected sum of several copies of tori.

Suppose we have an orientable gluing scheme for edges of a single poly-
gon. Then

• either there exists a pair aa−1 of neighboring edges glued together;

• or there is a pair of alternating pairs of edges glued together,
a . . . b . . . a−1 . . . b−1 . . . .

Indeed, take for a the edge belonging to a “shortest” pair of corresponding
edges (the one with the lowest number of edges between a and a−1). Then,
if the edges a and a−1 are not neighboring, then any other edge b in between
a and a−1 and its pair b−1 form an alternating pair with a, a−1. Figure 3.3
shows how the alternating pair a . . . b . . . a−1 . . . b−1 . . . can be replaced by
an alternating neighboring pair ABA−1B−1.
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Figure 3.1: Collecting together alternating pairs of edges

A pair of neighboring edges glued together can be glued without chang-
ing the topology of the resulting surface, and collecting alternating pairs of
edges also does not increase the number of edges in the polygon. Therefore,
repeating these steps we prove the theorem by induction.

Theorem 3.11 Two standard models for gluing connected 2-dimensonal
surfaces from a 4g1-gon and a 4g2-gon produce nonhomeomorphic surfaces
provided g1 6= g2.

Suppose a surface S is the result of gluing together a finite set of polygons
that has V vertices (the images of the vertices of the polygons), E edges (the
images of the edges of the polygons), and F faces (the polygons themselves).
The expression

χ(S) = V − E + F

is called the Euler characteristic of the surface S.

Theorem 3.12 All simplicial deccompositions of the same surface S give
one and the same value of the Euler characteristic.

In other words, χ(S) is a topological invariant of the surface.
In order to prove the theorem, note that a simplicial subdivision of

a triangle does not change its Euler characteristic. Given two simplicial
decompositions of a given surface, consider their common subdivision: the
corresponding Euler characteristic will be the same.

Now it suffices to note that the standard model of a closed orientable
surface on a 4g-gon has Euler characteristic 2 − 2g (there are 1 vertex, 2g
edges and 1 face).

Exercise 3.13 What is the standard model for the surface with the model
a1a2 . . . ana

−1
1 a−12 . . . a−1n ?

Exercise 3.14 Prove that two models of the form aabcb−1c−1 and aabbcc
produce homeomorphic surfaces.

Exercise 3.15 Using a simplicial subdivision of the real projective plane,
compute its Euler characteristic.
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Exercise 3.16 Using a simplicial subdivision of the 3-sphere and the real
projective space RP 3, compute their Euler characteristics. Verify that the
Euler characteristic does not allow one to distinguish between these two
spaces.

Exercise 3.17 Prove that any nonorientable surface admits a standard
model of the form aabb . . . on a 2g-gon. By computing the Euler character-
istics of these surfaces show that they are not homeomorphic for different
values of g.

Exercise 3.18 Find standard models for orientable surfaces with boundary.

Exercise 3.19 Find standard models for nonorientable surfaces with bound-
ary.
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In this chapter we start to study the notion of homotopy. This notion
formalizes the idea of continuous deformation of either a topological space,
or a mapping. Homotopy is an equivalence relation on the set of topological
spaces. This relation is weaker than that of homeomorphism, but homotopy
equivalent spaces share many common properties. In particular, they have
isomorphic homotopy groups.

4.1 Paths, loops, and their homotopies

Let X be a topological space. A continuous mapping γ : [0, 1] → X is
called a path in X. We say that the path γ connects the point γ(0) to the
point γ(1) (the beginning of the path to its end). A path γ is called a loop
with the initial point x0 ∈ X if γ(0) = γ(1) = x0.

Two paths γ0, γ1 : [0, 1]→ X having coinciding ends, γ0(0) = γ1(0), γ0(1) =
γ1(1), are said to be homotopic if there is a continuous mapping Γ :
[0, 1] × [0, 1] such that Γ(t, 0) = γ0(t),Γ(t, 1) = γ1(t) and Γ(0, s) ≡ γ0(0),
Γ(1, s) ≡ γ0(1). This definition means that we do not move the ends of the
path and allow to deform continuously its interior part.

Note that for any y ∈ [0, 1], the restriction γy of the mapping Γ to the
segments [0, 1]× {y} is a continuous path in X having the same beginning
and the same end as γ0 and γ1.

Exercise 4.1 Prove that any loop at a point x0 in the ball Dn is homotopic
to the constant map t 7→ x0.

Exercise 4.2 Prove that any loop at a point x0 in a bounded star-like do-
main in Rn is homotopic to the constant map t 7→ x0.

Path connected topological spaces such that all the loops in them are
homotopic to the constant map are said to be simply connected.

Exercise 4.3 Prove that two paths γ0 : x 7→ eπix and γ1 : x 7→ e−πix

are homotopic to one another if considered as paths in C = R2 and are
not homotopic to one another if considered as paths in the punctured plane
C \ {0} = R2 \ {0}.

4.2 Homotopic continuous maps

The notion of homotopy extends to continuous mappings of arbitrary topo-
logical spaces, not necessarily the segment.
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Let M,X be two topological spaces, and let f0, f1 : M → X be two
continuous maps. These two maps are said to be freely homotopic if there
is a continuous mapping F : M × [0, 1] → X such that F |M×{0} = f0 and
F |M×{1} = f1. Free homotopy is an equivalence relation on the space of
continuous mappings M → X.

The notion of free homotopy is not of much use, however. For example,
any two paths in a path connected topological space are freely homotopic.
That is why we usually consider homotopy of mappings satisfying certain
restrictions, like in the case of paths in X we consider only those paths that
have a given beginning and a given end. See, however, the next section.

4.3 Homotopy equivalence of topological spaces

Let X and Y be two topological spaces. These spaces are said to be homo-
topy equivalent if there is a continuous mapping f : X → Y and a continuous
mapping g : Y → X such that their composition g ◦ f : X → X is freely
homotopic to the identity mapping idX : X → X and their composition
f ◦ g : Y → Y is freely homotopic to the identity mapping idY : Y → Y .
Two homotopy equivalent spaces can have very different topological prop-
erties (like two balls Dn and Dm of different dimensions), but some of their
properties are very close in nature.

Exercise 4.4 Prove that homotopy equivalence indeed is an equivalence re-
lation on the set of topological spaces.

A topological space homotopy equivalent to a point is said to be con-
tractible.

Exercise 4.5 Prove that any two homeomorphic topological spaces are ho-
motopy equivalent.

Exercise 4.6 Prove that if Y is contractible, then X×Y is homotopy equiv-
alent to X, for any topological space X.

The statement of this exercise can be extended to a more general situa-
tion. Call a continuous mapping π : Y → X a locally trivial fibration with
a fiber Z if any point x ∈ X possesses a neighborhood U 3 x such that the
restriction of π to the preimage π−1(U) coincides with the projection of the
direct product U × Z to the first factor.
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Exercise 4.7 Prove that if f : X → S1 is a locally trivial fibration over the
circle S1 with the fiber [0, 1], then X is homeomorphic to either the cylinder
S1 × [0, 1] or to the Möbius band.

Exercise 4.8 Prove that if π : Y → X is a locally trivial fibration with
contractible fiber Z, and X is a simplicial complex, then Y is homotopy
equivalent to X.

Exercise 4.9 Prove that the cylinder S1 × [0, 1] and the Möbius band both
are homotopy equivalent to the circle S1.

Exercise 4.10 Prove that if a topological space is contractible, then it is
path connected.

Exercise 4.11 Let X,Y be topological spaces, A ⊂ X, and let ψ1, ψ2 : A→
Y be two continuous mappings that are freely homotopic. Denote by Z1, Z2

the topological spaces obtained by gluing X and Y along the mappings ψ1

and ψ2. Is it true that Z1 and Z2 necessarily are homotopy equivalent?

Exercise 4.12 Let X be a topological space, A ⊂ X. Denote by Y the result
of gluing the cylinder over A to X, so that Y = (XtA× [0, 1])/(a ∼ (a, 0)).
Prove that X and Y are homotopy equivalent.

Below, we consider the following list of topological spaces:

[0, 1], (0, 1),R2,Rn, Sn, S1 × (0, 1), S1 × [0, 1], Möbius band,RP2,

as well as the same spaces with punctured at several points and graphs.

Exercise 4.13 • Which of these spaces are contractible (do not prove
noncontractibility!)?

• Which of these spaces are simply connected (do not prove nonsimply-
connectedness)?

• Which pairs of these spaces are homotopy equivalent (do not prove
homotopy nonequivalence)?

• For each topological space from the list, find a compact topological
space homotopy equivalent to it;

• Which of these spaces (including punctured ones) are homotopy equiv-
alent to a graph?
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Exercise 4.14 Prove that contracting an edge in a graph that is not a loop
we obtain a homotopy equivalent graph.
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In this chapter we define one more invariant of topological spaces,
namely, the fundamental group.

5.1 Fundamental group

Define the concatenation of two paths γ1, γ2 such that the end of the first
path coincides with the beginning of the second one, γ1(1) = γ2(0), by

γ2#γ1(t) =

{
γ1(2t) for t ∈ [0, 12 ],

γ2(2t− 1) for t ∈ [ 12 , 1].

Recall that a loop in a topological space X with the starting point x0 ∈ X is
a continuous path γ : [0, 1]→ X such that γ(0) = γ(1), and, therefore, the
concatenation of any two loops with the same starting point is well defined.
We will refer to it as the product of two loops.

In spite of the fact that this operation is well defined, it is not associa-
tive: generally speaking, the product (γ3#γ2)#γ1 does not coincide with
γ3#(γ2#γ1). However, concatenation becomes associative when considered
on homotopy classes of loops rather than on loops themselves.

Let π1(X,x0) denote the set of classes of homotopy equivalence of loops
in X starting and ending at x0. Define multiplication on the set π1(X,x0)
as [γ2][γ1] = [γ2#γ1].

Theorem 5.1 This multiplication makes π1(X,x0) into a group.

This group is called the fundamental group of the topological space X
with the base point x0. Note that computing a fundamental group is not an
easy task in many cases, and even when it is computed, it is not always easy
to compare results of two computations: whether they produce isomorphic
groups or not.

In order to prove the theorem, we have to prove the following:

• multiplication is associative;

• there is a neutral element;

• each element of π1(X,x0) has an inverse.

A homotopy between the paths (γ3#γ2)#γ1 and γ3#(γ2#γ1) can be
given by the parameter change

γ(t, s) =

 γ1(2t) for t ∈ [0, 12 ],
γ2(t− 1

2 ) for t ∈ [ 12 ,
3
4 ]

γ3(2t− 1) for t ∈ [ 34 , 1].
,
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which gives γ(t, 0) = (γ3#γ2)#γ1, while γ(t, 1) = γ3#(γ2#γ1).
The neutral element of the fundamental group is given by the constant

mapping γ(t) ≡ x0, and the inverse element is given by the same loop, but
passed in the opposite direction.

5.2 Dependence on the base point

If two points x0 ∈ X,x′0 ∈ X belong to different path connected components
of the topological space X, then the fundamental groups π1(X,x0) and
π1(X,x′0) are not related to one another. However, if x0 and x′0 belong
to the same path connected component of X, then the two groups are
isomorphic. Therefore, one can talk about the isomorphism type of the
fundamental group π1(X) of a path connected topological space X.

Theorem 5.2 Let X be a topological space, and suppose x0, x
′
0 are two

points belonging to the same path connected component of X. Then the
fundamental groups π1(X,x0) and π1(X,x′0) are isomorphic.

Indeed, let γ′ : [0, 1] → X, γ′(0) = x0, γ
′(1) = x′0 be a path in X

connecting x0 and x′0. Define a mapping π1(X,x′0) → π1(X,x0) by [γ] 7→
[γ′−1#γ#γ′] where we denote by γ′−1 the path γ′ passed in the opposite
direction, γ′−1(t) = γ′(1 − t). The fact that this mapping establishes an
isomorphism between the two groups is obvious. This isomorphism depends
on the homotopy class [γ′] of the path γ′.

5.3 Fundamental groups of certain spaces.

Theorem 5.3 If a topological space X is contractible, then the fundamental
group π1(X) is trivial (consists only of the neutral element).

In particular, the trivial group is the fundamental group of any ball of
dimension ≥ 1, of the Euclidean spaces Rn and Cn, as well as any simplex.

Also a simple theorem describes the fundamental group of a product of
topological spaces.

Theorem 5.4 For two topological spaces X,Y and points x0 ∈ X, y0 ∈ Y ,
we have π1(X × Y, (x0, y0)) ≡ π1(X,x0)× π1(Y, y0).

Theorem 5.5 The fundamental group of the n-dimensional sphere, for n ≥
2, is trivial.
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Note that in contrast to balls, spheres, although their fundamental groups
are trivial, are not contractible.

Indeed, if γ : [0, 1]→ Sn is a loop in the sphere such that its image does
not contain a point x ∈ Sn, then we can consider this loop as a path in
the space Sn \ {x}, which is homeomorphic to the contractible space Rn.
Hence, the loop is contractible, whence trivial. However, we must overcome
the difficulty related to existence of loops passing through each point of the
sphere (a Peano curve is an example of a loop of this type).

Now suppose the image of γ is the whole sphere Sn. Let A ∈ Sn be a
point different from x0. Define the function fγ,A : [0, 1]→ R by the formula

fγ,A(x) = ρ(γ(x), x0) + ρ(γ(x), A),

where ρ is the standard distance on Sn. Note that, because of the triangle
inequality, fγ,A(x) ≥ ρ(x0, A) for any x ∈ [0, 1].

Lemma 5.6 There are finitely many points 0 = t0, t1, . . . , tN = 1 in the
segment [0, 1], t0 < t1 < t2 < · · · < tN , such that the image of each segment
[ti, ti+1] does not contain either x0 or A.

Indeed, for each point t ∈ [0, 1] choose an interval containing t and such
that |fγ,A(t) − fγ,A(s)| ≤ 1

2ρ(x0, A) for all s in the interval. The image of
such an interval under γ does not contain either x0, or A (or both). Since
the segment is compact, we can select finitely many intervals covering it,
which proves the lemma.

Using the lemma, we can homotopy the curve γ on each segment [ti, ti+1],
preserving its ends, in such a way that the modified curve does not contain A
in the image of the interior of each segment. Then, shifting from A finitely
many points (if necessary), we obtain a loop homotopic to the original one
and not passing through the point A. Hence, it is contractible to x0.

5.4 Fundamental groups of homotopy equiv-
alent spaces

Theorem 5.7 Let X,Y be two homotopy equivalent path connected spaces,
x0 ∈ X, y0 ∈ Y . Then the fundamental groups π1(X,x0) and π1(Y, y0) are
isomorphic.

Proof. Let X,Y be two topological spaces, x0 ∈ X, and let f : X → Y
be a continuous map. Any loop γ : [0, 1] → X with the beginning and the
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end at x0, γ(0) = γ(1) = x0, defines a loop in Y with the beginning and the
end at f(x0) ∈ Y . This loop is nothing but the composition f◦γ : [0, 1]→ Y .

Clearly, if two loops γ1, γ2 : [0, 1] → X are homotopic, then the loops
f ◦ γ1, f ◦ γ2 : [0, 1] → Y are homotopic as well. Therefore, composition
with f defines a mapping f∗ : π1(X,x0) → π1(Y, f(x0)). It is easy to see
that this mapping is a group homomorphism.

If y0 ∈ Y is a point and ζ : [0, 1] → Y is a path connecting f(x0)
to y0, then the mapping [γ] 7→ [ζ−1#(f ◦ γ)#ζ] defines a homomorphism
π1(X,x0)→ π1(Y, y). (We do not require that y0 6= f(x0); if the two points
coincide, then the homomorphism could still be different from f∗). This
homomorphism depends on the homotopy class of the path ζ.

Now, if X,Y are path connected and homotopy equivalent, then take
two continuous maps f : X → Y and g : Y → X such that the composite
maps g ◦ f : X → X and f ◦ g : Y → Y are homotopic to the identity maps
of the corresponding spaces. Let x0 ∈ X. Choose an arbitrary continuous
path ζ : [0, 1] → X connecting x0 and f ◦ g(x0), that is, ζ(0) = x0, ζ(1) =
f ◦ g(x0). Then the mapping [γ] 7→ [ζ−1#(f ◦ g ◦ γ)#ζ] is an isomorphism
between π1(X,x0) and π1(X, f ◦ g(x0)). To prove this statement, it suffices
to consider the homotopy between f ◦ g and the identity map of X.

Hence, we have two homomorphisms f∗ : π1(X,x0) → π1(Y, f(x0)) and
g∗ : π1(Y, f(x0))→ π1(X, g ◦ f(x0)) whose composition g∗ ◦ f∗ is an isomor-
phism. This means, in particular, that f∗ has no kernel.

Exercise 5.8 Prove that, for a continuous mapping f : X → Y of topo-
logical spaces, the mapping f∗ : π1(X,x0) → π1(Y, f(x0)) is indeed a group
homomorphism.

Corollary 5.9 The fundamental group of any graph is isomorphic to the
fundamental group of a bouquet of circles.

Exercise 5.10 Prove that a connected graph (not necessarily simple, loops
and multiple edges are allowed) with V vertices and E edges is homotopy
equivalent to the bouquet of E − V + 1 circles.

Corollary 5.11 The fundamental group of any surface punctured at finitely
many points is isomorphic to the fundamental group of a bouquet of circles.

Exercise 5.12 Find the number of circles in the bouquet homotopy equiv-
alent to an orientable surface of genus g punctured at n points. Find the
number of circles in the bouquet homotopy equivalent to a nonorientable
surface of genus g punctured at n points.
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5.5 Edge-path group of a simplicial complex

Let ∆2 be a 2-dimensional simplex, that is, a triangle. Two vertices of the
triangle can be connected by its edges in two different ways: either along
the edge of which they are the ends, or along the other pair of edges. These
two paths in ∆2 are homotopic (since the triangle is contractible).

Now let X be a simplicial complex, and let x0 ∈ X be one of its vertices
(a simplex of dimension 0). An edge-loop in X starting and ending at x0
is a sequence of oriented edges (1-dimensional simplices) (e1, . . . , ek) such
that the beginning of e1 as well as the end of ek is x0, while, for i > 1, the
beginning of ei coincides with the end of ei−1.

Note that an edge-loop can be made into an ordinary loop by choosing
its arbitrary parametrization (that can well be a piecewise linear mapping
of the segment [0, 1] to the sequence of edges).

Two edge-loops can be multiplied by concatenating them. On the other
hand, a replacement of an edge ei in an edge-loop by two other edges of a
triangle containing ei provides an edge-loop homotopic to the original one,
and the same is true for the inverse operation. We also allow to annihilate
two consecutive edges in an edge-loop that are the same edge passed in the
opposite directions, or to insert a pair of such edges. The equivalence classes
of edge-loops modulo chains of these operations form a group with respect
to the multiplication above. We call this group the edge-loop group of the
simplicial complex X with the base vertex x0 and denote it by E(X,x0).

Theorem 5.13 The edge-loop group E(X,x0) of a connected simplicial
complex X with a base vertex x0 ∈ X depends only on the 2-skeleton of X.
It is naturally isomorphic to the fundamental group π1(X,x0).

Pick a numbering of the vertices of X by numbers 1, . . . , N . Let T be
a spanning tree of the 1-skeleton of X (that is, T is a tree containing all
vertices of X). Associate to an edge connecting the vertices i and j, i < j,
the edge loop in X in the following way, which depends on whether the edge
ij belongs to the tree T . If the edge ij belongs to the tree T , then connect
the vertex i with x0 by a path in T . The loop in question goes along this
path, then along the chosen edge ij, then back from j to x0. Obviously, this
loop is contractible along T . If the edge ij, i < j, does not belong to the
tree T , then the loop goes from x0 to i along T , then along the edge ij, then
along the path in T connecting j and x0. Denote the constructed loops eij ,
for all ij in the 1-skeleton of X.
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Theorem 5.14 For a given spanning tree T of the 1-skeleton of X, the
fundamental group π1(X,x0) admits a representation of the form

π1(X,x0) = 〈eij , ij ⊂ X(1)|eij = 1, for ij in T, eik = eijejk〉

where the generators eij,i < j, correspond to the 1-dimensional simplices
in X, a and the triple relations eik = eijejk correspond to all the 2-
dimensional simplices, with vertices i, j, k, i < j < k.

Note that a spanning tree T in the theorem can be replaced by an
arbitrary simply connected subcomplex of X containing all vertices. In
applications, this remark could prove to be useful.

Exercise 5.15 Prove that the fundamental group of a compact orientable 2-
dimensional surface of genus g admits a representation with a single relation
of the form 〈a1, b1, . . . , ag, bg|a1b1a−11 b−11 . . . agbga

−1
g b−1g 〉.

Prove that the fundamental group of a compact nonorientable 2-dimensional
surface of genus g admits a representation with a single relation of the form
〈a1, . . . , ag|a21 . . . a2g〉.
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Coverings are an efficient and an effective tool for computing funda-
mental groups. Moreover, coverings are intimately related to fundamental
groups: there is a natural one-to-one correspondence between subgroups of
the fundamental group of a path connected topological space and coverings
of this space.

6.1 Fundamental groups of projective spaces

Let RPn be the n-dimensional real projective space, and let π : Sn → RPn

be the mapping identifying pairs of opposite points of the sphere. Pick an
arbitrary point x0 ∈ RPn. Consider a loop γ : [0, 1] → Pn, γ(0) = γ(1) =
x0, and let π−1(γ([0, 1])) ⊂ Sn be the total preimage of this loop in the
sphere. Each point of the loop has two preimages under π. Let y0 be one of
the two preimages π−1(x0) of the base point x0 ∈ RPn, and denote by y′0
the second preimage. We are going to show that there is a unique way to
chose one of the two preimages of each point γ(x) so that these preimages
together form a continuous path γ̃ : [0, 1]→ Sn, γ̃(0) = y0. The end of this
path can be either the point y0, or the point y′0.

For each point γ(x) ∈ RP2 choose a small open ball Ux 3 γ(x) such that
its preimage π−1(Ux) in Sn is a disjoint union of two balls. The preimages
γ−1(Ux) of such balls form an open cover of [0, 1]. Each open subset in [0, 1]
is a disjoint union of intervals, and we choose a finite subcover of [0, 1] by
intervals. For an interval I in this subcover, the preimage π−1(γ(I)) consists
of two disjoint paths. Indeed, the path γ(I) belongs to some ball Ux, and
the preimage π−1(Ux) is the disjoint union of two balls.

Now order the intervals covering the segment [0, 1] by increasing co-
ordinates of their left ends (without loss of generality one may suppose
that there are no two intervals with coinciding left ends, since it is possible
to leave only the largest of the two in the cover). Choose the connected
component of the preimage π−1(γ(I1)) of the interval I1 that starts at the
point y0. Then chose the connected component of the preimage π−1(γ(I2))
of the interval I2 that coincides with the previously chosen preimage of I1
on their intersection, and so on. In this way we obtain a connected path
γ̃ : [0, 1]→ Sn, γ̃(0) = y0.

Theorem 6.1 For n ≥ 2, we have π1(RPn) = Z2.

Indeed, the mapping π takes any loop in Sn with the base point y0,
as well as any path connecting y0 with y′0 to a loop in RP2 with the base
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point x0. These kinds of loops represent different elements of the fundamen-
tal group π1(RPn, x0): homotopy of loops in RPn preserve the ends of the
the path in Sn. On the other hand, any loop in Sn with the base point y0
is contractible, whence represents the neutral element of the fundamental
group π1(RPn, x0). And if the path γ̃ connects two points y0 and y′0, then

the path γ̃#γ for γ passed twice is a loop with the base point y0, whence
contractible.

6.2 Coverings, their degrees and pullbacks of
paths

The example studied in the previous section is the simplest example of a
covering.

A continuous mapping f : Y → X of two topological spaces is called a
covering if any point x ∈ X has a neighborhood U such that its preimage
under f is a disjoint union f−1(U) = V1tV2t . . . of open subsets in Y such
that the restriction of f to each subset Vi is a homeomorphism.

Lemma 6.2 Let f : Y → X be a covering, and suppose X is path con-
nected. Then if some point x ∈ X has finitely many preimages under f ,
then the same is true for all the points in X, and the number of the points
in the preimage of each point is the same.

This common number of preimages is called the degree of the covering f .
If the set of preimages of each point in X is infinite, then we say that the
covering has infinite degree. Below, we will always assume that the space X
is path connected, so that the degree is always well defined. It is denoted
by deg f .

Proof. Let x1, x2 be two points in X, and suppose that the number of
points in the preimage f−1(x2) differs from that in f−1(x1). Connect the
points x1, x2 by a continuous path γ : [0, 1] → X, γ(0) = x1, γ(1) = x2.
Each point γ(t) of the path, t ∈ [0, 1], admits a neighborhood Ut ⊂ X
such that the restriction of f to f−1(Ut) is a collection of homeomor-
phisms. Since the segment is compact, one can choose finitely many neigh-
borhoods Ut covering the image γ([0, 1]) of the path. Let these be neighbor-
hoods Ut1 , . . . , Utk , t1 < t2 < · · · < tk. All the points in one neighborhood
Uti have the same number of preimages under f . Split the neighborhoods
Uti into two subsets: one, where the number of preimages coincides with
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that for x1, and its complement. Then, since the segment is connected, the
unions of the two subsets must intersect, and we arrive at a contradiction.

Exercise 6.3 Construct a covering of the circle of a given degree n.

Exercise 6.4 Prove that the mapping C\{0} → C\{0} given by the formula
z → zn is a covering of degree n.

Exercise 6.5 Prove that the mapping z 7→ P (z) given by a polynomial P (z)
of degree n is a covering over the complement in C to the set of critical values
of P (a critical value of a polynomial is its value at a point where dP = 0).
What is the degree of this covering?

Exercise 6.6 Prove that the mapping z 7→ ez is a covering C → C \ {0}.
What is the degree of this covering?

6.3 Coverings and subgroups of the funda-
mental group

Let f : Y → X be a covering, y0 ∈ Y , and x0 = f(y0). Since f is a
continuous mapping, it defines a homomorphism f∗ : π1(Y, y0)→ π1(X,x0).

Lemma 6.7 For a covering f : Y → X, f(y0) = x0, the homomorphism
f∗ : π1(Y, y0)→ π1(X,x0) is a monomorphism.

The proof of the lemma requires a more general statement. Recall that
a pullback f∗γ : [0, 1]→ Y of a path γ : [0, 1]→ X is a path in Y such that
f ◦ f∗γ : [0, 1]→ X coincides with γ.

Theorem 6.8 (Covering homotopy for loops) Let f : Y → X be a
covering, y0 ∈ Y , x0 = f(y0). Then any loop γ : [0, 1]→ X, γ(0) = γ(1) =
x0 admits a unique pullback f∗γ : [0, 1]→ Y such that f∗γ(0) = y0.

The proof proceeds in the same way as the above proof of the fact that
the degree of a covering is well-defined. We cover the image of the loop γ
by open sets as in the definition of a covering, take their preimages under γ,
choose a finite subcovering of [0, 1] by intervals, and for each such interval
pick an appropriate connected component of the preimage under f of the
loop γ restricted to this interval, so that the chosen preimages glue together
into a continuous path.
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Proof of Lemma 6.7. We want to prove that if a loop γ : [0, 1]→ X,
γ(0) = γ(1) = x0 is homotopic to the constant loop, then the path f∗γ
is in fact a loop and is homotopic to the constant one. Take a homotopy
Γ : [0, 1] × [0, 1] → X, Γ(0, s) ≡ Γ(1, s) ≡ x0, Γ(t, 0) ≡ γ(t), Γ(t, 1) ≡ x0,
between γ and the constant loop. For each s ∈ [0, 1] the mapping γs :
[0, 1] → X, γs(t) = Γ(t, s) is a loop in X starting and ending at x0, and
it has a unique pullback f∗γs : [0, 1] → Y starting at y0, γs(0) = y0, the
pullback f∗γ1 being the constant map.

Denote by s0 the supremum of the set of values of s such that all the
points f∗γs(1) coincide with the end f∗γ(1) of the pullback of γ. Then s0 =
1. Indeed, suppose the converse. Take, as above, an open covering of the
loop γs0([0, 1]) by open subsets of X, choose a finite subcovering U1, . . . , Uk,
and the ends f∗γs(1) of the pullbacks of the paths γs must belong to one
and the same copy of the preimage f−1(Uk) of the last neighborhood Uk
under f . Hence, we cannot have s0 < 1.

Now it is easy to see that the pullbacks f∗γs of the paths γs form a
homotopy between the paths f∗γ0 = f∗γ and f∗γ1.

Exercise 6.9 State and prove the analogue of the Covering homotopy the-
orem for arbitrary paths in X, not necessarily loops, beginning at x0.

Exercise 6.10 Consider all paths in Y starting at some point in f−1(x0)
and covering the loop γ. Show that

• the mapping taking a point in f−1(x0) to the end of the corresponding
path is a permutation of the set f−1(x0);

• this permutation depends only on the homotopy type [γ] ∈ π1(X,x0);

• the mapping associating to an element in π1(X,x0) the corresponding
permutation of f−1(x0) is a group homomorphism.

This homomorphism is called the monodromy of the covering f : Y → X
(associated with the base point x0 ∈ X).

6.4 Bijection between path connected cover-
ings and subgroups of the fundamental
group

Theorem 6.11 Let X be a path connected simplicial complex, and let
x0 ∈ X. Then there is a one-to-one correspondence between subgroups
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of π1(X,x0) and coverings (Y, y0)→ (X,x0) such that Y is path connected,
considered up to equivalence.

Here two coverings f : (Y, y0)→ (X,x0) and f ′ : (Y ′, y′0)→ (X,x0) are
said to be equivalent if there exists a homeomorphism h : (Y, y0)→ (Y ′, y′0)
such that f ′ ◦ h = f .

Proof. The mapping f∗ associates to a covering f : (Y, y0) → (X,x0)
by a connected topological space Y the subgroup f∗π1(Y, y0) in π1(X,x0).
Let f ′ : (Y ′, y′0) → (X,x0) be another covering, and suppose that the two
subgroups f∗π1(Y, y0), f ′∗π1(Y ′, y′0) in π1(X,x0) coincide. Let us construct
an equivalence h : (Y, y0)→ (Y ′, y′0) between the two coverings.

Each path γ : [0, 1] → X starting at x0 has unique pullbacks f∗γ
starting at y0 and f ′∗γ starting at y′0 to Y and Y ′, respectively. Define
the mapping h : Y → Y ′ in the following way. Let y ∈ Y , and pick a
path ζ : [0, 1] → Y in Y connecting y0 to y. Then we set h(y) to be
equal to the end of the path f ′∗ζ, which starts at y′0. Since the two sub-
groups f∗π1(Y, y0), f ′∗π1(Y ′, y′0) in π1(X,x0) coincide, the mapping h is well
defined: the value h(y) does not depend on the choice of the path ζ connect-
ing y0 to y. Clearly, h is a homeomorphism and, together with f and f ′,
forms a commutative triangle.

Now, for each subgroup in π1(X,x0), we must construct a covering
f : (Y, y0) → (X,x0). Consider the topological space P(X,x0) whose ele-
ments are equivalence classes of paths γ : [0, 1] → X starting at x0. Two
paths γ1, γ2 are considered as being equivalent if their ends coincide and
the loop γ−12 γ1 is contractible. The topology on the space P(X,x0) is intro-
duced by means of the following base. For an open set U ⊂ X, x ∈ U , and
a path γ starting at x0 and ending at x, we define the subset Uγ ⊂ P(X,x0)
as the set of equivalence classes of paths whose beginning coincides with γ,
and the rest of the path is contained in U . The sets Uγ for various paths γ
form a base of a topology in P(X,x0).

For a subgroup G ⊂ π1(X,x0), consider the equivalence relation ∼G
on P(X,x0) defined by γ1 ∼G γ2 iff γ1(1) = γ2(1) and [γ−12 γ1] ∈ G.
Clearly, the quotient space P(X,x0)/ ∼G together with the natural map-
ping (P(X,x0)/ ∼G, (x0, id)) → (X,x0) taking the equivalence class of a
path γ to x is a covering, and the image of π1((P(X,x0)/ ∼G, (x0, id))
under this covering is G.
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6.5 Universal coverings and group actions

A covering f : (Y, y0)→ (X,x0) is called a universal covering if the topolog-
ical space Y is simply connected, π1(Y, y0) = {e}. The name is justified by
the universality property of the universal covering: if f : (Y, y0) → (X,x0)
is a universal covering and g : (Z, z0)→ (X,x0) is any covering of X, then
there is a covering h : (Y, y0) → (Z, z0) such that the composition g ◦ h
coincides with f .

Because of the uniqueness of a covering corresponding to a given sub-
group of π1(X,x0), any path connected simplicial complex admits a unique
up to equivalence universal covering.

Suppose a group G acts on a topological space Y by homeomorphisms.
We say that G acts freely if no element of g other than unity has fixed
points. We say that G acts properly discontinuously if for any element
g ∈ G, g 6= id, and any point y ∈ Y there is a neighborhood U of y such
that U ∩ gU = ∅.

Theorem 6.12 Let Y be a path connected topological space. If a group G
that is at most countable acts on Y freely and properly discontinuously
and y0 ∈ Y , then the quotient space Y/G is path connected and the fac-
torization mapping (Y, y0) → (Y/G, [y0]) is a covering. If, in addition, Y
is simply connected, then the factorization mapping is a universal covering
and π1(Y/G, [y0]) is naturally isomorphic to G.

Exercise 6.13 Show that both requirements are necessary: the factoriza-
tion mapping can prove to be not a covering provided G acts either not
freely or not properly discontinuously.

Exercise 6.14 Construct the following topological spaces as the quotient
spaces of their universal coverings modulo a free properly discontinuous
group action: the circle S1, the bouquet ∨ni=1 of n circles, the punctured
complex line C \ {0}, the cylinder, the Möbius band, the torus T2, the pro-
jective plane RP2, the Klein bottle, the group SO(3) of rotations of R3, the
projective space RPn of arbitrary dimension. Using these constructions find
the fundamental groups of these spaces.

Exercise 6.15 For each of the topological spaces mentioned in the previous
exercise construct its covering for each subgroup of its fundamental group.
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Exercise 6.16 Check that the fundamental groups of the torus, projective
plane and Klein bottle computed with the help of Theorem 6.12 coincide with
those computed through the edge-loop group.

Exercise 6.17 Prove that any finitely generated Abelian group is realizable
as the fundamental group of some topological space.

Exercise 6.18 Give an example of a topological space with a noncommu-
tative finite fundamental group.
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In this chapter, we will discuss additional tools for computing funda-
mental groups.

7.1 Van Kampen theorem

It was given as an exercise that the fundamental group of the connected
sum of two path connected spaces coincides with the free product of the
fundamental groups of the summands. To be more precise, if (Y, y0) and
(Z, z0) are two path connected topological spaces, with basepoints y0 ∈ Y ,
z0 ∈ Z, then their connected sum is (X,x0) = (Y, y0) ∨ (Z, z0) = (X t
Y )/(y0 ∼ z0), with the base point x0 formed by the identified base points
of the two spaces. We have

π1(X,x0) = π1(Y, y0) ∗ π1(Z, z0).

Here, the star on the right denotes the free product of groups.

7.1.1 Recollection: free product of groups

Let us recall what is the free product of groups. Let H,G be two groups.
A reduced word in the alphabet G tH is a word of the form

h1g1h2g2 . . . hkgk,

for some positive integer k, such that

• hi ∈ H, gi ∈ G, for i = 1, . . . , k;

• none of the internal letters g1, h2, . . . , hk is the unit element of the
corresponding group;

(note that either h1, or gk, or both, are allowed be unit elements). The
free product G ∗H of the groups G and H consists of reduced words in the
alphabet G tH.

The product of two elements in G∗H is defined as concatenation of two
reduced words and applying repeatedly to the resulting word the following
reduction steps, until obtaining a reduced word:

1. erase all internal unit elements in the word;

2. replace any sequence of consecutive elements belonging to one of the
groups by their product in this group.
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Exercise 7.1 Prove that if the group G has presentation 〈g1, . . . , gm|u1, . . . , uM 〉,
and the group H has presentation 〈h1, . . . , hn|v1, . . . , vN 〉, then their free
product H∗G admits presentation 〈h1, . . . , hn, g1, . . . , gm|u1, . . . , uM , v1, . . . , vN 〉.

Note that the free product of two groups, both of which are nontrivial,
is necessarily non-commutative.

7.1.2 Van Kampen’s theorem

The statement about the fundamental groups of the connected sum of two
topological spaces extends without changes to the case when a path con-
nected topological space X is represented as a union of two path connected
topological spaces, X = Y ∪Z, provided the intersection Y ∩Z is contractible
and contains the base point of X. Van Kampen’s theorem generalizes this
statement to a more general situation, where the intersection Y ∩ Z is not
necessarily contractible, and even can have a nontrivial fundamental group.

Theorem 7.2 Suppose a path connected topological space X is represented
as a union of two path connected topological spaces, X = Y ∪ Z, and
the intersection Y ∩ Z is path connected and contains the base point x0.
Denote by ϕ : Y ∩ Z → Y , ψ : Y ∩ Z → Z the inclusion mappings.
Suppose also that the fundamental group π1(Y, x0) admits a presentation
〈g1, . . . , gm|u1, . . . , uM 〉, the fundamental group π1(Z, x0) admits a presen-
tation 〈h1, . . . , hn|v1, . . . , vN 〉, and the fundamental group π1(Y ∩ Z, x0) is
generated by elements q1, . . . , q`. Then the fundamental group π1(X,x0)
admits presentation

π1(X,x0) = 〈h1, . . . , hn, g1, . . . , gm|
v1, . . . , vN , u1, . . . , uM , ϕ∗(q1)ψ−1∗ (q1), . . . , ϕ∗(q`)ψ

−1
∗ (q`)〉.

In other words, the fundamental group π1(X,x0) is the amalgamated
product of the groups π1(Y, x0) and π1(Z, x0).

Exercise 7.3 Use Van Kampen’s theorem to compute

• the fundamental group of the sphere Sn, n ≥ 2;

• the fundamental group of a 2-dimensional surface.

Corollary 7.4 If, in the assumptions of the previous theorem, the inter-
section Y ∩Z is simply connected, then the fundamental group π1(X,x0) is
the free product of the fundamental groups π1(Y, y0) and π1(Z, z0).
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7.1.3 Proof of Van Kampen’s theorem

Let X = Y ∪Z be a representation of a path connected topological space X
as a union of two open path connected subsets Y,Z ⊂ X, and suppose
x0 ∈ Y ∩ Z.

Firstly, the homotopy class of any loop in X can be represented as a
composition of homotopy classes of loops contained either in Y , or in Z.
Indeed, let γ : [0, 1] → (X,x0) be a loop. Each point t ∈ [0, 1] has an
interval neighborhood whose image under γ is contained either in Y or
in Z. Pick such an interval neighborhood for each point, and choose a finite
subcovering of the covering of the segment by these intervals. Without loss
of generality we may suppose that none of these intervals is contained in the
other one, and the intervals intersect in pairs only. Then choosing a point in
the intersection of each two consecutive intervals we cut the segment [0, 1]
into finitely many segments such that the image of each segment under γ
is contained either in Y or in Z (below, we call them small segments). By
replacing consecutive small segments by a single small segment if necessary,
we may also assume that the small segments alternate: if the image of a
small segment is contained in Y , then the image of the next one is contained
in Z, and vice versa. The common boundary point of two consecutive small
segments belongs to Y ∩ Z. For each such common boundary point, pick
a path connecting it to x0 inside Y ∩ Z. The homotopy class of γ is then
represented as a product of the homotopy classes of loops corresponding
to each small segment, each loop being the composition of the inverse to
the path in Y ∩ Z chosen for the beginning of the small segment, then the
restriction of γ to the small segment, and then the path in Y ∩ Z chosen
for the end of the small segment. Each such loop is totally contained either
in Y or in Z.

Therefore, the generators of π1(Y, x0) and π1(Z, x0) generate together
π1(X,x0).

Now we are going to show that each homotopy of a loop in X with
the base point x0 can be decomposed into a sequence of homotopies, each
totally contained either in Y , or in Z.

Let γ0, γ1 : [0, 1] → X be two homotopic loops in (X,x0), and let Γ :
[0, 1] × [0, 1] → X be a homotopy between them. Then each point in the
square [0, 1]× [0, 1] admits an open neighborhood such that the image of the
neighborhood under Γ is contained either in Y or in Z. Choose a coordinate
rectangular subneighborhood in each such neighborhood. These coordinate
rectangular neighborhoods cover the square; pick a finite subcovering from
this covering. The sides of these finitely many rectangles, extended to the
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sides of the square, cut the square into finitely many rectangles with sides
parallel to the coordinate axes. The image of each of these rectangles under
the homotopy Γ is contained totally either in Y or in Z. Number the
rectangles consecutively from left to right in the first row, then in the second
row, and so on.

Note that any path in [0, 1]× [0, 1] starting at the left side of the square
and ending at its right side parameterizes a loop in (X,x0). We will consider
paths going along the sides of the rectangular cells in the square. The
homotopy Γ can be represented as a composition of a finite sequence of
homotopies, numbered by the number of the corresponding square. In each
homotopy, a part of the path represented by two sides of a rectangle is
replaced by the part represented by the other two sides (a switch), while the
rest of the path remains unchanged. Each such switch makes a homotopy
inside either Y or Z, and after making all these switches, we obtain a
homotopy between γ0 and γ1.

Hence, there are no relations in π1(X,x0) but those coming from π1(Y, x0)
and π1(Z, x0) and the identification of the elements of both groups lying
inside π1(Y ∩ Z, x0), and the theorem is proved.

7.2 Knot and link groups

A knot in the 3-space is a smooth nondegenerate embedding S1 → R3 of a
circle. Similarly, a link is a smooth nondegenerate embedding S1t· · ·tS1 →
R3 of several disjoint circles. Below, we will restrict ourselves with giving
definitions for knots only, while problems and examples will touch links as
well.

A knot invariant is a function on knots whose values coincide on any
two knots belonging to the same ambient isotopy class. An ambient isotopy
(that is, an isotopy of the ambient space of the knot) is a 1-parameter
family of diffeomorphisms R3 × [0, 1] → R3. The isomorphism class of the
fundamental group of the complement to the image of a knot is an important
knot invariant.

The complement to a point in the 3-sphere S3 is homeomorphic to R3.
This means that any knot in R3 can be considered as a knot in S3 as well.
The fundamental group of the complement to the image of a knot in R3 is
isomorphic to the fundamental group of its complement in S3. Indeed, if we
represent the complement to the image of a knot in S3 as the union of a small
ball centered at the puncture and the complement to the puncture, then the
intersection of these two open sets is homotopy equivalent to the 2-sphere
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S2, whence simply connected. Corollary 7.4 now asserts the isomorphism of
the two fundamental groups. Considering S3 instead of R3 will be sometimes
more convenient for us.

7.2.1 Fundamental groups of the complements to sim-
plest knots and links

An unknotted closed curve in R3 is the knot isotopic to the standard em-
bedding of S1 into the horizontal plane in R3. The fundamental group of
its complement is isomorphic to Z. Indeed, surround the circle by a suffi-
ciently large 2-sphere. Then the exterior of the sphere can be contracted
to the sphere, while the complement to the knot inside the sphere can be
contracted to the union of the sphere and the vertical diameter in it. Hence,
the complement to the circle is homotopy equivalent to the connected sum
of the sphere S2 and the circle S1, and its fundamental group is Z.

Exercise 7.5 Show that the fundamental group of the complement in R3 of
two circles in the horizontal plane is Z ∗ Z.

In contrast, if we consider a horizontal and a vertical circle, each passing
through the center of the other one, then their complement in R3 is con-
tractible to the torus S1 × S1. The fundamental group of the complement
is then Z⊕ Z, which proves that these two links are not ambient isotopic.

Another class of knots with easily computable fundamental groups is
formed by so-called torus knots. Let’s think of S3 as of the unit sphere
in C2. Let p, q be relatively prime positive integers. The (p, q)-torus knot
in S3 is the mapping S1 → S3 given by

ϕ 7→ (z1, z2) = (eipϕ, eiqϕ), ϕ ∈ [0, 2π].

The image of this mapping belongs to the torus S1×S1 given by the equa-
tions |z1| = |z2| = 1. It winds p times around the first (“parallel”) circle
and q times around the second (“meridian”) circle.

Example 7.6 For any positive integer q, the (1, q)-torus knot is an unknot.

Example 7.7 The (2, 3)-torus knot is the trefoil.

Theorem 7.8 The fundamental group of the complement to the (p, q)-torus
knot in S3 admits the presentation 〈a, b|ap = bq〉.
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Proof. The torus |z1| = |z2| = 1 in S3 splits the 3-sphere into two solid
tori D2 × S1. Let’s contract the complement to the (p, q)-torus knot in S3

to the image of an embedding of the surface Xp,q constructed as follows.
Let Xm, m = 1, 2, . . . , denote the quotient of the cylinder S1 × [0, 1]

modulo the group Z/mZ-action, where the action is trivial on all points
but the lower boundary S1 × {0}, where it is generated by rotation by the
angle 2π/m. The topological space Xm can be thought of as the result
of identifying the boundary stars {0} × Sm and {1} × Sm in the product
[0, 1] × Sm after rotating a star Sm by the angle 2π/m; here Sm denotes
the m-star graph, which consists of a central vertex connected by m edges
with m other vertices. The noncentral vertices of the star graph Sm, after
multiplication by [0, 1], rotation and gluing, form the boundary circle ∂Xm.

The fundamental group π1(Xm) coincides with that of the cylinder and
is isomorphic to Z.

The topological space Xp,q is obtained from Xp and Xq by gluing them
together along a homeomorphism of their boundary circles ∂Xp = S1 and
∂Xq = S1.

The fundamental group π1(Xp,q) admits a presentation of the form
〈a, b|ap = bq〉. Indeed, let a be a generator of the fundamental group
π1(Xp), and let b be a generator of the fundamental group π1(Xq). The
topological space Xp,q can be naturally represented as the union of an open
neighborhood of Xp and an open neighborhood of Xq in such a way that the
intersection of the two neighborhoods is a cylinder. The p-times multiple
of a is homotopic to the boundary of Xp, which coincides with boundary
of Xq, homotopic, in turn, to the q-times multiple of b (taken with an ap-
propriate orientation). Now Van Kampen’s theorem gives the answer.

The topological spaceXp,q can be embedded into S3 in the following way.
Its Xp-part is embedded into one of the two solid tori, so that the central
circle of Xp is taken to the central circle of the solid torus, while its Xq-part
is embedded into the other solid torus, its central circle taken to the central
circle of the solid torus. Under such an embedding, the common boundary
∂Xp = ∂Xq is taken to the torus S1×S1, which is the common boundary of
the two solid tori. We require this embedding being the half-twisted original
(p, q)-torus knot, that is, the mapping ϕ 7→ (epiϕ+πi/p, eqiϕ).

The complement to the original torus knot can be contracted to the
image of Xp,q under this embedding. The contraction goes on inside each
of the two solid tori, while the surface of the boundary torus with the torus
knot eliminated is contracted to the image of ∂Xp = ∂Xq. This proves the
theorem.
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7.2.2 Wirtinger presentations

The Wirtinger presentation of the fundamental group of the complement
to a knot expresses it in terms of a knot diagram. A plane knot diagram
splits into connected intervals, each contained between two consecutive un-
dercrossings. We consider these connected intervals as generators of the
fundamental group. To each such interval a loop in the complement to
the image of the knot in R3 with the base point x0 above the plane of the
diagram is associated in a natural way, as shown in the picture.

Relations are associated to the crossings of the diagram. If a is the over-
crossing interval at an intersection point, and b, c are the two undercrossing
intervals situated and oriented as shown in the picture. Then it is easy to
check the relation

aba−1 = c

in R3 \K, K being the image of the knot. Wirtinger’s theorem states that
the fundamental group π1(R3 \K,x0) is generated by the homotopy classes
of loops associated to the intervals, while the relations associated to the
crossings form a complete set of relations.

Example 7.9 For two linked circles, the Wirtinger presentation has the
form

π1(R3 \ L) = 〈a, b|aba−1 = b, bab−1 = a〉.

Either of the two relations means that a and b commute, so that the funda-
mental group is isomorphic to Z⊕ Z.

Example 7.10 For the trefoil, its standard plane diagram has three inter-
vals, and the three crossings of the diagram produce the three relations, so
that,

π1(R3 \K,x0) = 〈a, b, c|aba−1 = c, bcb−1 = a, cac−1 = b〉.

Exercise 7.11 Show that in the above presentation of the fundamental
group of the complement to the trefoil knot in R3 each of the three rela-
tions is a corollary of the other two.

Prove that any relation in the Wirtinger presentation of the fundamental
group to the complement of a knot can be expressed in terms of the other
relations, so that any relation in the Wirtinger presentation can be omitted.

Show that the Wirtinger presentation of the fundamental group of the
complement to the trefoil gives a group isomorphic to 〈a, b|a2 = b3〉.
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Exercise 7.12 By constructing, for a given knot diagram, a 2-dimensional
simplex to which the complement to the knot can be contracted, prove that
the Wirtinger presentation indeed is a presentation of the fundamental group
of the complement to the knot.
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The fundamental group of a topological space is a rather fine homotopy
invariant. However, it possesses two major weaknesses. Firstly, as we have
seen for simplicial complexes, it reflects the structure of the 2-skeleton of
the complex only. Simplexes of dimension greater than 2 remain invisible
for the fundamental group. Another weakness comes from the fact that it is
not an easy task to compare fundamental groups of two topological spaces.
If the two groups are given by their presentations in terms of generators and
relations, then establishing their isomorphism or nonisomorphism becomes
a nontrivial algorithmic problem.

Homology, which we are starting to study, provide a homotopy invariant
that takes into account simplexes of all dimensions. On the other hand,
comparing homology of two spaces also is easy. In the simplest case of
homology with coefficients in the field of real numbers R, this comparison
reduces to that of the dimensions of homology vector spaces.

The idea of homology is justified by a natural philosophy argument:
No boundary has a boundary.
Any political map confirms this statement: the boundary of a state has

no boundary even in the case when the state is not connected and contains
enclaves.

8.1 Chain complexes

We start with the simplest case of introducing homology, namely, with ho-
mology with coefficients in a field of characteristic 0. Real numbers will do,
and we consider below vector spaces over R without mentioning this fact
explicitly. Homology appeared first as a characteristic of topological spaces,
but their definition has nothing to do with topology.

Let V0, V1, V2, . . . be a sequence of vector spaces, and let ∂1 : V1 → V0,
∂2 : V2 → V1,. . . , ∂i : Vi → Vi−1, . . . be a sequence of linear operators.
Whenever possible, we assume that the vector spaces Vi are finite dimen-
sional, but we will not be able to follow this restriction everywhere. We say
that the sequence of spaces and operators

. . .
∂i+1−→ Vi

∂i−→ Vi−1
∂i−1−→ . . .

∂2−→ V1
∂1−→ V0 (8.1)

is a chain complex if for all i we have ∂i−1 ◦ ∂i = 0 for the composition
operator ∂i−1 ◦ ∂i : Vi → Vi−2. In other words, for each i, the subspace
Im ∂i+1 ⊂ Vi is contained in the subspace Ker ∂i ⊂ Vi: Im ∂i+1 ⊂ Ker ∂i ⊂
Vi.
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Be careful: chain complexes have nothing in common with simplicial
complexes, at least, formally. However, simplicial complexes generate a
huge series of important examples of chain complexes.

It is convenient to complete each chain complex with the mapping ∂0 :
V0 → 0 and, if the complex is finite and Vn is the space with the largest
index, then to add the mapping ∂n+1 : 0 → Vn, so that a finite chain
complex will look like

0
∂n+1−→ Vn

∂n−→ Vn−1 . . .
∂i+1−→ Vi

∂i−→ Vi−1
∂i−→ . . .

∂2−→ V1
∂1−→ V0

∂0−→ 0 (8.2)

(zeroes denote the 0-dimensional vector space R0). Note that such a com-
pletion preserves the property of a sequence to be a chain complex.

Example 8.1 An exact sequence is an example of a complex. Recall that
a sequence (8.1) of vector spaces and their linear maps is said to be exact
if Im ∂i+1 = Ker ∂i for each i.

Exercise 8.2 Prove that any sequence of vector spaces and their linear
maps of the form

0 −→ V1
d−→ V0 −→ 0

is a complex.

Example 8.3 Let R[x] be the ring of polynomials with real coefficients in
one variable. Set V1 = R[x] and V0 = R[x]dx, the vector space of 1-forms
on the line with polynomial coefficients. Then the differential operator d :
p(x) 7→ p′(x)dx takes V1 to V0, and the sequence

0 −→ V1
d−→ V0 −→ 0

is a chain complex.
This example admits an easy generalization to spaces of polynomials

in any number n of variables and spaces of differential forms of degrees
0, 1, 2, . . . , n. The corresponding boundary operators are presented by the
operator d taking a differential k-form to a differential (k + 1)-form.

If, instead of polynomials and differential forms with polynomial coeffi-
cients on Rn, we consider smooth functions on a manifold X and smooth
differential forms, then the resulting complex is called the de Rham complex
of X.
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Example 8.4 The following version of the previous example is useful. Set
V1 = R[x]e−x

2/2 and V0 = R[x]e−x
2/2dx. Then the differential operator

d : p(x)e−x
2/2 7→ d(p(x)e−x

2/2) = (p′(x) − xp(x))e−x
2/2dx takes V1 to V0,

and the sequence

0 −→ V1
d−→ V0 −→ 0

is a complex.
This example can be generalized in many directions. Firstly, the poly-

nomial −x2/2 in the exponent can be replaced by an arbitrary polynomial.
Secondly, we can consider complexes of differential forms in several vari-
ables, x ∈ Rn, having coefficients p(x)ef(x), where f is a given polyno-
mial, and p is an arbitrary polynomial. Moreover, for an arbitrary smooth
function f : X → R on a manifold X we can consider the chain complex
of differential forms whose coefficients are p(x)ef(x), for arbitrary smooth
functions p.

Exercise 8.5 Prove that the above examples indeed provide complexes.

A huge series of examples of complexes is provided by simplicial com-
plexes, and we devote a special section to the corresponding definition.

8.2 The chain complex of a simplicial complex

Let ∆n be a simplex of dimension n = dim ∆. If n is greater than 0,
then there are two ways to pick an orientation of ∆. Namely, pick two
numberings of the vertices of ∆ by numbers from 0 to n. We say that
these two numberings define the same orientation if the permutation of
{0, 1, . . . , n} taking the first numbering to the second one is even; otherwise,
we say that the two numberings define opposite orientations. (Recall that
a permutation is even if it can be represented as a product of an even
number of transpositions, and it is odd otherwise. For n > 1, half of the
permutations in the symmetric group Sn are even; they form a subgroup
An ⊂ Sn).

For the future purposes, we also extend in an obvious way the notion
of orientation to the case when the vertices of the simplex are numbered
by arbitrary pairwise distinct nonnegative integers, not necessarily varying
from 0 to n.

Now associate a chain complex to the simplex ∆n in the following way.
Pick an orientation of each face of ∆n. An oriented simplex of dimension k
with vertices numbered a0, . . . , ak will be denoted by [a0, . . . , ak]. Denote
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by Ck(∆n), k > 0, the vector space over R freely spanned by all oriented
k-dimensional faces of ∆n, and let C0(∆n) ≡ Rn+1 be freely spanned by
the vertices of ∆n. For each simplex δ with a chosen orientation, we denote
by −δ the same simplex with the opposite orientation, so that the sum of
the two oriented simplexes is 0. For a simplex δ of dimension 0, −δ is just
the formal opposite of the corresponding element of C0(∆n).

Define the boundary operator ∂n : Cn(∆n)→ Cn−1(∆n) as follows: the
boundary of the n-dimensional simplex is the sum of its faces of dimen-
sion n− 1, taken with the signs + or −:

∂n : ∆n = [0, 1, 2, . . . , n] 7→
n∑
i=0

(−1)i[0, 1, . . . , î, . . . , n],

where notation î symbolizes the absence of the number i. Similarly, we
define the boundary operator ∂k : Ck(∆n)→ Ck−1(∆n) by the equation

∂k : [v0, v1, . . . , vk] 7→
n∑
i=0

(−1)i[v0, v1, . . . , v̂i, . . . , vk]. (8.3)

Example 8.6 Let n = 2, and consider the simplex ∆2 (a triangle) endowed
with an orientation given by a numbering of its vertices with numbers 0, 1, 2.
Pick the orientations of the edges of ∆2 orienting each of them from the
smaller to the bigger number, so that C1(∆2) = 〈[0, 1], [1, 2], [0, 2]〉. Then
we have

∂2[0, 1, 2] = [1, 2]− [0, 2] + [0, 1].

It is easy to see that

∂1 ◦ ∂2[0, 1, 2] = ∂1([1, 2]− [0, 2] + [0, 1]) = ([2]− [1])− ([2]− [0]) + ([1]− [0])

is zero, and hence the sequence of vector spaces and linear operators

0 −→ C2(∆2)
∂2−→ C1(∆2)

∂1−→ C0(∆2) −→ 0

indeed is a chain complex.

Exercise 8.7 Prove that for any n = 0, 1, 2, . . . the sequence of vector
spaces and linear operators Ck(∆n), ∂k : Ck(∆n) → Ck−1(∆n) is a chain
complex.
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The above notions can be extended to arbitrary simplicial complexes.
Namely, for a simplicial complex X of dimension n, choose a numbering
of its vertices and pick an orientation of each of its simplexes of positive
dimension. Define Ck(X) as the vector space freely spanned by all the
oriented simplexes of dimension k. Define the boundary operator ∂k on a
simplex [v0, v1, . . . , vk] as in Eq. (8.3), and extend this operator to the whole
vector space Ck(X) by linearity. Then we obtain a sequence of vector spaces
and linear operators

0
∂n+1−→ Cn(X)

∂n−→ . . .
∂i+1−→ Ci(X)

∂i−→ . . .
∂2−→ C1(X)

∂1−→ C0(X)
∂0−→ 0

(8.4)
that is a chain complex, by the previous exercise. We denote this chain
complex by C(X).

8.3 Chains, cycles, boundaries, and homology

For a simplicial complex (8.1), the quotient vector space Ker ∂k/ Im ∂k+1 is
called the k th homology vector space and denoted by Hk. In particular, for
the chain complex of a simplicial complex X (8.2) it is denoted by Hk(X).
The direct sum ⊕k≥0Hk(X) is denoted by H∗(X).

In addition, the vector space Vk (resp., Ck(X)) is called the space of
k-chains, the vector space Ker ∂k ⊂ Vk is the space of k-cycles, and the
vector space Im ∂k+1 ⊂ Vk is the space of k-boundaries.

Example 8.8 Show that, for an n-dimensional simplex ∆n, n ≥ 0, we have

Hk(∆n) =

{
R k = 0
0 k > 0.

Now, let’s compute the homology of the boundary ∂∆2 of the sim-
plex ∆2. This boundary consists of three vectors [0, 1], [1, 2], [0, 2], so that we
have C1[∂∆2] = 〈[0, 1], [1, 2], [0, 2]〉, C0[∂∆2] = 〈[0], [1], [2]〉. The boundary
operator ∂1 : C1[∂∆2]→ C0[∂∆2] acts as follows:

∂1 : x[0, 1] + y[1, 2] + z[0, 2] 7→ −(x+ z)[0] + (x− y)[1] + (z + y)[2].

Its image is 2-dimensional and coincides with the hyperplane in C0[∂∆2]
consisting of the vectors with zero sum of the coordinates. Its kernel is
1-dimensional and is spanned by the vector [0, 1] + [1, 2] − [0, 2], a cycle.
Therefore, H1[∂∆2] ≡ R1 and H0[∂∆2] ≡ R1.
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Exercise 8.9 Verify that any two simplicial decompositions of the circle S1

produce the same homology.

Exercise 8.10 Compute the homology of the graph

• consisting of a single vertex and two loops;

• consisting of two vertices and three edges connecting them.

Exercise 8.11 Compute the homology of

• the boundary of the simplex ∆3;

• the boundary of the simplex ∆n of arbitrary dimension n ≥ 0.

An important number characterizing a finite complex consisting of finite
dimensional vector spaces is its Euler characteristic. By definition, the Euler
characteristic of a complex (8.2) is the alternating sum of dimensions of the
vector spaces entering it:

χ = dimV0 − dimV1 + dimV2 − · · ·+ (−1)n dimVn.

This definition can also be extended to chain complexes allowing infinite
dimensional vector spaces, but with finite dimensional homology. Namely,
we set

χ = dimH0 − dimH1 + dimH2 − · · ·+ (−1)n dimHn.

Exercise 8.12 Prove that for a finite chain complex consisting of finite
dimensional vector spaces the two definitions of the Euler characteristic
coincide.

Exercise 8.13 Find the Euler characteristics of the chain complexes in the
above examples.

Exercise 8.14 Prove that a differential 1-form q(x)e−x
2/2dx is the differ-

ential of a function p(x)e−x
2/2 if and only if∫ ∞
−∞

q(x)e−x
2/2dx = 0.

Using this statement, find the homology of the chain complexes in Exam-
ple 8.4 on the line for the polynomial f(x) = −x2/2;



Homology 61

Exercise 8.15 Find the homology of the chain complexes in Example 8.4
on the line for

• the polynomial f(x) = x3/3;

• the polynomial f(x) = (x3 − x)/3;

• arbitrary polynomial f(x).
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Homology is a way to replace complicated nonlinear topological objects
(which are usually manifolds or algebraic varieties) with much simpler lin-
ear algebraic ones (vector spaces). Nonlinear continuous mappings induce
linear mappings of homology. In order to prove that homology depends
on the topological type rather than on the chosen simplicial subdivisions,
we must prove that homology of two simplicial subdivisions of one and the
same topological space are the same. Moreover, homology is the same for
homotopy equivalent topological spaces.

9.1 Action of continuous mappings on homol-
ogy of simplicial complexes

Recall that a simplicial map f : X → Y is defined by a mapping from the
set of 0-simplices in X to the set of 0-simplices in Y such that the set of
vertices of any simplex in X is taken to a set of vertices of some simplex
in Y . For each k = 0, 1, 2 . . . , a simplicial map f defines a linear mapping
f∗ : Ck(X)→ Ck(Y ) of the vector space of k-chains in X to the vector space
of k-chains in Y . The mapping takes a generator [v0, . . . , vk] of Ck(X) to 0
if the 0-simplices f(v0), . . . , f(vk) are vertices of a simplex of dimension
less than k, and to the simplex [f(v0), . . . , f(vk)] provided the latter is a
simplex of dimension k. Note that the latter simplex may be either a basic
simplex in Ck(Y ), or a negative basic simplex, depending on whether the
orientation [f(v0), . . . , f(vk)] coincides with the chosen for the basic one.
The mapping f∗ is extended to linear combinations of basic simplices by
linearity.

Lemma 9.1 The mapping f∗ commutes with the boundary operators in
C(X) and C(Y ), respectively.

Indeed, for a k-simplex whose vertices are taken by f to the vertices of a
simplex of dimension less than k − 1 this statement is obvious: the map-
ping f∗ takes such a simplex, as well as its boundary, to 0. If the vertices of a
k-simplex are taken by f to the vertices of a simplex of the same dimension,
then the same is true for its face of arbitrary dimension, and in partic-
ular, for the boundary faces of the simplex. Finally, suppose the vertices
{0, 1, . . . , k} of a k-simplex are taken by f to the vertices of a (k−1)-simplex,
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so that f(0) = f(1). Then

f∗∂k[0, 1, . . . , k] = f∗

k∑
i=0

(−1)i[0, 1, . . . , î, . . . , k]

= [f(0), f(2), . . . , f(k)]− [f(1), f(2), . . . , f(k)]

= 0

as desired.

Corollary 9.2 A simplicial map f : X → Y of simplicial complexes de-
scends to a linear mapping f∗ : Hk(X)→ Hk(Y ) in homology.

9.2 Topological invariance of homology of sim-
plicial complexes

Theorem 9.3 Suppose two simplicial complexes X,Y are simplicial divi-
sions of one and the same topological space. Then they have the same ho-
mology.

In order to prove this theorem, we first prove the following

Lemma 9.4 Let X ′ be the barycentric subdivision of a simplicial com-
plex X. Then the homology of the two complexes coincide, Hk(X ′) = Hk(X)
for k = 0, 1, 2, . . . .

Recall that the barycentric subdivision of a simplicial complex consists of
barycentric subdivisions of its simplices. The barycentric subdivision of a
k-simplex is its splitting into (k + 1)! k-simplices constructed as follows.
The new vertices of the barycentric subdivision are the barycenters of all
the faces of positive dimension of the simplex, and there are 2k+1 − k − 2
new vertices. Each barycenter belongs to the corresponding face. The k-
simplices of the barycentric subdivision are in one-to-one correspondence
with the set of permutations of the set {v0, . . . , vk} of vertices of the initial
simplex. Namely, a permutation (v′0, . . . , v

′
k) defines the k-simplex whose

first vertex is v′0, the second vertex is the barycenter of the face [v′0, v
′
1], the

third vertex is the barycenter of the face [v′0, v
′
1, v
′
2], and so on.

Example 9.5 The barycentric subdivision of a 0-simplex is the simplex it-
self. The barycentric subdivision of a 1-simplex consists of two line seg-
ments, each connecting a vertex of the initial simplex with its middle point.
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The barycentric subdivision of a triangle consists of 6 triangles formed by
connecting the barycenter of the initial triangle to its vertices and the middle
points of the edges.

In order to prove Lemma 9.4, we construct a simplicial mapping i :
X ′ → X of the barycentric subdivision X ′ of X to X and show that the
homology mapping i∗ is invertible. Pick a numbering of the vertices of X.
Take a simplex ∆k in X and pick the number of each additional vertex in its
barycentric subdivision (∆k)′ in such a way that this number belongs to the
set of numbers of the minimal face of ∆k containing this additional vertex.
By definition, the simplicial mapping i takes each vertex of the barycentric
subdivision X ′ to the vertex of X having the same number.

Among the k-dimensional simplexes of the barycentric subdivision (∆k)′

of a given k-simplex ∆k in X, there is a unique simplex having the same set
of vertex numbers as ∆k itself. Indeed, in order to find such a simplex take
the barycenter of ∆k for the first vertex, then take the (k − 1)-face of ∆k

not containing the vertex with the number chosen for the barycenter of ∆k,
and so on.

Now it is easy to check that the linear mapping j : Ck(X) → Ck(X ′)
taking each k-simplex in X to the sum of the k-simplexes of its barycentric
subdivision descends to a linear mapping j∗ : Hk(X) → Hk(X ′), which is
inverse to i∗ : Hk(X ′)→ Hk(X).

Definition 9.6 Let X,Y be two simplicial complexes. Each point y ∈ Y
belongs to the interior of exactly one simplex in Y . Let f : X → Y be an
arbitrary continuous mapping. We say that a simplicial mapping ϕ : X → Y
is a simplicial approximation of f if for each point x ∈ Y its image ϕ(x)
belongs to the simplex in Y corresponding to the point f(x).

Lemma 9.7 Any simplicial approximation ϕ of a continuous mapping f is
homotopic to f .

Indeed, the two mappings are connected by the homotopy F : X ×
[0, 1] → Y , F (x, t) ≡ (1 − t)f(x) + tϕ(x) (the operations are well-defined
inside each simplex in Y , whence totally in Y ), F (x, 0) = f(x), F (x, 1) ≡
ϕ(x).

Lemma 9.8 Let ϕ : X → Y , ψ : Y → Z be simplicial approximations of
continuous maps f : X → Y , g : Y → Z, respectively. Then ψ ◦ ϕ : X → Z
is a simplicial approximation of the composition g ◦ f .



Homology of simplicial complexes 66

For a simplicial complex X, denote by X(m) its m th barycentric subdi-
vision.

Theorem 9.9 Let X,Y be simplicial complexes, and let f : X → Y be a
continuous mapping. Then, for some m ≥ 0, there is a simplicial approxi-
mation ϕ : X(m) → Y .

We refer the reader to [Prasolov] for a proof of this theorem.

9.3 Homotopy invariance of homology of sim-
plicial complexes

Theorem 9.10 If two simplicial complexes X,Y are simplicial divisions of
homotopy equivalent topological spaces, then they have the same homology.

The proof of this theorem is based on the following

Lemma 9.11 If f, g : X → Y are two homotopic continuous mappings of
two simplicial complexes, then they induce the same linear mappings f∗, g∗ :
H∗(X)→ H∗(Y ) on homology.

Indeed, for this purpose it suffices to construct a representation of the
product X × [0, 1] as a simplicial complex, which coincides with the com-
plex X when restricted to both X×{0} and X×{1}. (In order to construct
such a simplicial complex it suffices to represent in this form the product
∆× I for a simplex ∆.)

Exercise 9.12 Construct a simplicial division of the product ∆k ×∆m of
two simplices adding no vertices. How many (n+m)-simplexes does it have?

Corollary 9.13 For m 6= n, the vector spaces Rm and Rn are not homeo-
morphic to one another.

Indeed, suppose the converse, and let f : Rm → Rn be a homeomor-
phism. Then f is a homeomorphism between Rm \ {0} and Rn \ {f(0)}.
The latter spaces are homotopy equivalent to the spheres Sm−1 and Sn−1,
respectively. For m 6= n these two spheres have different homology, and we
are done.
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Homology of chain complexes we considered in the previous sections are
homology with coefficients in a field. Specifically, it is the field R of real
numbers. If we replace the field R with another field of characteristic 0, say,
the field C of complex numbers or the field Q of rationals, then the homol-
ogy Hk(X) of a simplicial complex X will be essentially the same: these
will be vector spaces over the corresponding field of the same dimension as
in the case of reals. The dimension of the space of homology is the only
significant information.

Considering homology with coefficients in Abelian groups allows one
to replace vector spaces with Abelian groups that sometimes carry more
subtle information and distinguish between topological spaces that cannot
be distinguished by homology with coefficients in R.

For a finite simplicial complex X and an Abelian group G, denote by
Ck(X,G) the group of chains with coefficients in G,

Ck(X,G) =
{∑

ai∆
k
i

}
,

where ai ∈ G and the summation is carried over all basic oriented k-
dimensional simplices in X. The definition of the boundary operators
∂k : Ck(X,G) → Ck−1(X,G) as well as verification of the fact that we
obtain in this way a chain complex remain the same as in the case of real
coefficients. Hence one may define the homology groups Hk(X;G) with
ceofficients in G for all k.

Theorem 10.1 If G is the additive group of a ring, then the homol-
ogy Hk(X;G) are topology and homotopy invariants.

10.1 Chain complexes of Abelian groups

Let C0, C1, C2, . . . , be a sequence of finitely generated Abelian groups. Re-
call that each such Abelian group G is isomorphic to a group of the form
Zr ⊕ (Zp1 ⊕ · · · ⊕ Zpk), where the positive integers p1, . . . , pk are powers
of primes. The summand Zp1 ⊕ · · · ⊕ Zpk is denoted by Tors(G), so that
the group has the form G = Zr ⊕ Tors(G); it is well-defined and consists
of elements of finite order in G. On the contrary, the summand Zr is not
well-defined, since the sum of an element of infinite order and an element of
finite order is an element of infinite order as well. Only the degree r of the
summand Z is well-defined; it is called the rank of the Abelian group G.
Thus, there is an exact sequence of Abelian groups of the form

0 −→ Zp1 ⊕ · · · ⊕ Zpk = Tors(G) −→ G −→ Zr −→ 0.
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A sequence C of Abelian groups and their homomorphisms

0
∂n+1−→ Cn

∂n−→ . . .
∂i+1−→ Ci

∂i−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0 (10.1)

is called a chain complex of Abelian groups if Im ∂k+1 ⊂ Ker ∂k for all k =
0, 1, 2, . . . . The quotient group Ker ∂k/ Im ∂k+1 is called the k th homology
group of the chain complex C and is denoted by Hk(C).

The following examples show that homology of chain complexes of
Abelian groups could be more sophisticated than that of chain complexes
of vector spaces.

Example 10.2 Consider the chain complex

0−→C1 = Z ∂1=×p−→ C0 = Z−→0,

where the homomorphism ∂1 is defined as multiplication by an integer p.
Then ∂1 has zero kernel, and its image consists of the subgroup pZ ⊂ Z.
Therefore, H1(C) = 0 and H0(C) = Z/pZ = Zp.

Example 10.3 Consider the chain complex

0−→C1 = Zp
∂1=×q−→ C0 = Zp−→0, (10.2)

where p is a positive integer and the homomorphism ∂1 is defined as multi-
plication by an integer q. Then if q is relatively prime to p, then the chain
complex is acyclic, that is, H1(C) = H0(C) = 0. On the contrary, if q = p,
then we have H1(C) = H0(C) = Zp.

Exercise 10.4 Find the homology of chain complex (10.2) in the case
where p and q are not coprime, but q 6= p.

The notion of Euler characteristic can be defined for chain complexes of
Abelian groups as well. Similarly to the case of chain complexes over R,
the Euler characteristic χ(C) of a chain complex C of Abelian groups is
defined either as the alternating sum of the ranks of groups of chains∑n
i=0(−1)i rank(Ck), or as the alternating sum of the ranks of homology

groups
∑n
i=0(−1)i rank(Hk).

Exercise 10.5 Prove that these two definitions yield the same number.
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10.2 Fundamental class and the degree of a
continuous mapping

The notion of a surface can be generalized to simplicial complexes of dimen-
sions greater than 2.

A simplicial complex X is called a connected pseudomanifold of dimen-
sion n if

• each simplex in X is a face of an n-dimensional simplex;

• each simplex of dimension n−1 in X is a face of exactly two simplices
of dimension n;

• the complex X is strongly connected meaning that for any two n-
simplices ∆n

a , ∆n
b in X there is a tuple of n-simplices ∆n

1 , . . . ,∆
n
k

such that any two consecutive simplices in the extended sequence
∆n
a ,∆

n
1 , . . . ,∆

n
k ,∆

n
b have a common (n− 1)-dimensional face.

For an n-dimensional pseudomanifold, we define its Z2-fundamental class
as the sum of all its n-simplices. The following statement is obvious.

Lemma 10.6 For an n-dimensional pseudomanifold X, we have Hn(X,Z2) =
Z2 and the Z2-fundamental class of X spans its n th homology with coeffi-
cients in Z2.

Indeed, the boundary of the fundamental class is 0, since each (n − 1)-
dimensional simplex enters this boundary exactly twice. On the other hand,
any other nonzero n-dimensional Z2-chain has a non-zero boundary: take
an n-simplex ∆n

a that belongs to this chain, and an n-simplex ∆n
b that

does not, and consider a tuple of n-simplices as in the definition of strong
connectedness. Then there are two neighboring simplices in this tuple, one
belonging to the chain, and the other one not. Their common (n − 1)-
face enters the boundary of the chain with coefficient 1 ∈ Z2, whence the
boundary is nonzero.

The fundamental class of a pseudomanifold can also be defined over Z,
but in order to do that, we need first to introduce the notion of orientability.
We say that the orientations of two n-simplices with a common (n − 1)-
dimensional face are compatible if this face enters the boundary of these
simplices over Z with opposite signs. An n-dimensional pseudomanifold is
said to be orientable if one can choose orientations of each n-simplex in X in
such a way that orientations of any two simplices with a common (n−1)-face
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are compatible. We call such a choice an orientation of the pseudomanifold.
If a pseudomanifold X of dimension n > 0 is orientable, then it admits
two different orientations. Picking one of the two orientations, we obtain
an oriented pseudomanifold. The Z-fundamental class of an oriented n-
dimensional pseudomanifold is the sum of all oriented n-simplices in it with
coefficients 1 ∈ Z.

Lemma 10.7 For an oriented n-dimensional pseudomanifold X, we have
Hn(X,Z) = Z and the Z-fundamental class of X spans its n th homology
with coefficients in Z.

The proof is exactly the same as in the Z2-case.

Lemma 10.8 For a non-orientable n-dimensional pseudomanifold X, we
have Hn(X,Z) = 0.

Indeed, nonorientability of X means that there is a tuple of n-simplices
∆1, . . . ,∆k in X such that

• each pair of simplices (∆1,∆2), (∆2,∆3), . . . (∆k−1,∆k), (∆k,∆1),
has a common (n− 1)-face;

• there is no way to choose compatible orientations for all the simplices
in the sequence;

(otherwise we would be able to choose compatible orientations for all the
simplices in S). Without loss of generality we may assume that the orien-
tation of each of the simplices ∆i, i = 2, 3, . . . , k is chosen in such a way
that it is compatible with that of ∆i−1. Suppose there is a chain of di-
mension n in S such that all n-simplices enter it with nonzero coefficients
and such that its boundary is 0 (a nontrivial n-cycle). Then it contains all
∆i, i = 1, 2, . . . , k with nonzero coefficients. These coefficients must be the
same, since the common (n − 1)-face of ∆i−1 and ∆i enters the boundary
with the opposite sign for all i = 2, . . . , k. But then the common (n−1)-face
of ∆k and ∆1 enters the boundary with the same sign, which means that
the coefficient must be 0, a contradiction.

Exercise 10.9 Prove that a nonorientable pseudomanifold admits a 2-fold
covering by an orientable one.

A simplicial mapping f : X → Y of a simplicial complex defines a
homomorphism f∗ : H∗(X) → H∗(Y ) of homology. If both X and Y are
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oriented pseudomanifolds of the same dimension n, then the homomorphism
f∗ : Hn(X,Z) → Hn(Y,Z) takes the fundamental class of X to an element
in Hn(Y ) that is proportional to the fundamental class of Y . The pro-
portionality coefficient is called the degree of the mapping f . Since all the
simplicial approximations of any continuous mapping f : X → Y define
the same homomorphism f∗ : H∗(X) → H∗(Y ) of homology, the notion of
degree is well defined not only for simplicial mappings, but for arbitrary
continuous mappings as well.

Exercise 10.10 Let X → Y be a finite covering of an oriented surface
by an oriented surface. Prove that in this case the two notions of degree
coincide.

Exercise 10.11 Let f : X → CP1 be a rational function on a Riemann
surface X considered as a continuous mapping of a surface to S2. Endow
both X and CP1 with the orientation induced by the complex structure.
Prove that the degree of f coincides with the number of preimages of all
noncritical values in CP1.

The degree of a continuous mapping X → Y can be defined in the case
where either X, or Y , or both are nonorientable pseudomanifolds as well.
In this case the degree, which is the proportionality coefficient between the
image of the Z2-fundamental class of X and the Z2-fundamental class of Y ,
is an element of Z2, that is, it is either 0 or 1.

10.3 Homology of the real projective plane

In order to apply the above constructions, let us consider homology of the
real projective plane with coefficients in R,Z, and Z2. For RP2, we can
consider the simplicial decomposition shown in Fig. ??. Here the projec-
tive plane is represented as the 2-dimensional disk with identified opposite
points of the boundary circle. The simplicial decomposition consists of 10
2-dimensional simplices, 15 segments and 6 vertices numbered from 0 to 5.
The corresponding chain complexes look like

0 −→ C2(RP2,R) = R10 −→ C1(RP2,R) = R15 −→ C0(RP2,R) = R6−→0,

0 −→ C2(RP2,Z) = Z10 −→ C1(RP2,Z) = Z15 −→ C0(RP2,Z) = Z6−→0,

and

0 −→ C2(RP2,Z2) = Z10
2 −→ C1(RP2,Z2) = Z15

2 −→ C0(RP2,Z2) = Z6
2−→0,
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respectively. Writing out the boundary operators is straightforward, and
computation of homology can be easily done by a computer algebra pro-
gram. However, our current knowledge allow us to simplify the computa-
tion.

Theorem 10.12 The homology of the real projective plane are

H2(RP2,R) = 0, H1(RP2,R) = 0, H0(RP2,R) = R;

H2(RP2,Z) = 0, H1(RP2,Z) = Z2, H0(RP2,Z) = Z;

and

H2(RP2,Z2) = Z2, H1(RP2,Z2) = Z2, H0(RP2,Z2) = Z2.

Note that homology of the real projective plane with coefficients in R
coincide with those of a point (or any contractible simplicial complex), al-
though RP2 is not contractible. On the contrary, computations over Z
and Z2 confirm noncontractibility.

Over reals, we know that H0(RP2,R) is R, since the projective plane is
connected, and H2(RP2,R) = 0, because the projective plane is nonori-
entable. Now we can conclude that H1(RP2,R) = 0, since the Euler
characteristic of the projective plane is 1: the image of the boundary op-
erator C2(RP2,R) = R10 −→ C1(RP2,R) = R15 is 10-dimensional, be-
cause the second homology are 0. The image of the boundary operator
C1(RP2,R) = R15 −→ C0(RP2,R) = R6 is 5-dimensonal, hence its kernel
is 10-dimensional and coincides thus with the subspace of 1-boundaries.

Over integer numbers, the computation of H2 and H0 is exactly the same
as in the case of real numbers. Computation of H1(RP2,Z) is more subtle.
The answer Z2 comes from the remark that the boundary of the sum of
all the 2-simplices in Fig. ?? is the boundary circle of the disk, which, in
its own turn, is twice the sum of the edges 2([0, 2] + [2, 1] + [1, 0]). On the
other hand, the half of the latter sum, that is, [0, 2] + [2, 1] + [1, 0] is not a
boundary. See the next section for discussion of computation of H1 over Z.

The zero homology with coefficients in Z2 are computed as above. The
second homology result from the Z2-fundamental class of RP2. In order to
compute the first homology we may recall that the group Z2 may be also
treated as the field with two elements; the groups Zp2 are then vector spaces
over Z2. The alternating sum of the dimensions of these vector spaces is
then a topological invariant of the simplicial complex and coincides with its
Euler characteristic, which gives H1(RP2,Z2) = Z2.
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10.4 Homology of simplicial complexes with
coefficients in Z and Hurewicz theorem

Let Γ be a group, not necessarily commutative. Denote by [Γ,Γ] ⊂ Γ the
commutator of Γ, that is, the subgroup in Γ generated by the commutators
aba−1b−1 of elements a, b of Γ. If Γ is Abelian, then its commutator is
the trivial subgroup, but this is not the case if Γ is noncommutative. The
commutator [Γ,Γ] is a normal subgroup in Γ, and the quotient subgroup
Γ/[Γ,Γ] is commutative. This quotient subgroup is called the centralizer,
or the commutant, of Γ.

Theorem 10.13 (Hurewicz) Let X be a finite connected simplicial com-
plex, and let π1(X) be its fundamental group. Then the group H1(X,Z) of
first homology of X with coefficients in Z is the commutant of π1(X).

Corollary 10.14 The group of first homology of a graph with coefficients
in Z is the free commutative group Zb1 of rank b1, the first Betti number of
the graph.

Indeed, the commutant Fb/[Fb, Fb] of the free group with b generators
is the free Abelian group Zb.

Corollary 10.15 The group H1(Mg,Z) of first homology of an oriented
surface of genus g with coefficients in Z is the free commutative group Z2g

of rank 2g.

Indeed, the fundamental group π1(Mg) admits a presentation of the form
〈a1, b1, a2, b2, . . . , ag, bg|a1b1a−11 b−11 . . . agbga

−1
g b−1g 〉. Therefore, since the

only relation belongs to the commutator subgroup of the free group F2g with
the generators a1, b1, a2, b2, . . . , ag, bg, the commutant π1(Mg)/[π1(Mg), π1(Mg)]
coincides with the commutant F2g/[F2g, F2g] of the free group with 2g gen-
erators.

Exercise 10.16 Find the commutator and the commutant of the funda-
mental groups of the projective plane and the Klein bottle.

The proof of Theorem 10.13 proceeds as follows. Both the fundamen-
tal group and the first homology group of a simplicial complex are totally
determined by the 2-skeleton of the simplicial complex. In this 2-skeleton
we can contract 1-dimensional simplices so that to make a single vertex
(0-dimensional simplex). Contraction of 1-dimensional simplices changes
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neither the fundamental, nor the homology group. The resulting single ver-
tex can be taken for the base point of the fundamental group, and it spans
the zero homology group.

The only edges that survived under contraction are loops at the single
vertex; these loops both form a set of generators of the fundamental group,
and span the group of 1-cycles. The 2-simplices in the 2-skeleton after con-
traction become discs that generate all the relations among the generators in
the fundamental group. The natural mapping from the fundamental group
to the first homology group preserves these relations, and adds new ones,
that of commutativity. Hence, the resulting homology group is the quotient
of the fundamental group modulo its commutant.

Exercise 10.17 Use Exercise 10.9 to show that the first Z-homology of a
nonorientable pseudomanifold can be realized as a subgroup of index 2 in
the first Z-homology of its 2-fold orientable covering.

Exercise 10.18 Compute homology of the Klein bottle with coefficients
in R, Z,Z2.

Exercise 10.19 Compute homology of a nonorientable surface of genus g
with coefficients in R,Z,Z2.

Exercise 10.20 Compute homology of the real projective space RP3 with
coefficients in R,Z,Z2.

ex-n2c
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In addition to considering homology with coefficients in an arbitrary
Abelian group, there is one more way to make homology into a finer invariant
of topological spaces. This way consists in introducing multiplication on
homology thus making them into a graded ring instead of just a vector
space (or an Abelian group). Unfortunately, there is no natural way to
introduce multiplication in homology themselves, and multiplication arises
naturally on their dual spaces, cohomology. This multiplication, however,
reflects another natural structure on homology: comultiplication.

11.1 Cohomology of chain complexes

Let

0
∂n+1−→ Cn

∂n−→ . . .
∂i+1−→ Ci

∂i−→ . . .
∂2−→ C1

∂1−→ C0
∂0−→ 0 (11.1)

be a sequence of vector spaces over the field R of real numbers and their
linear maps. Denote by C∨k the dual vector space for Ck, C∨k = Hom(Ck,R),
k = 0, 1, . . . , n. Here Hom(V,R) = V ∨, for a finite dimensional vector
space V over R, denotes the vector space of linear functionals from V to R;
note that dim V = dim V ∨. For a pair of vector spaces U, V , any linear
mapping A : U → V determines the dual linear mapping A∨ : V ∨ → U∨

according to the rule
A∨(f)(u) = f(A(u)).

In this way the sequence (11.1) produces a sequence of vector spaces and
linear maps

0
δn+1←− C∨n

δn←− . . . δi+1←− C∨i
δi←− . . . δ2←− C∨1

δ1←− C∨0
δ0←− 0, (11.2)

where we set δi = ∂∨i , i = 0, . . . , n.

Lemma 11.1 If the sequence (11.1) is a chain complex, then the sequence (11.2)
also is a chain complex.

Indeed, in order to prove this statement it suffices to show that if for a
triple of vector spaces and operators

U
A−→ V

B−→W

we have ImA ⊂ KerB, then for the dual sequence

U∨
A∨←− V ∨ B∨←−W∨



Multiplication 78

we have ImB∨ ⊂ KerA∨. The latter statement follows since if B(A(u)) = 0
for any u ∈ U , then A∨ ◦B∨ = 0 as well.

The lemma allows one to define the homology of the chain complex C∨
dual to the chain complex C. This homology are called the cohomology of
the initial chain complex and denoted by Hk = Ker δk/ Im δk−1. Elements
of the vector space Ck are called the k-cochains, elements of Ker δk are
k-cocycles, and elements of Im δk−1 are k-coboundaries.

Any element of Ker δk, being a linear functional on Ck, is a linear
functional on Ker ∂k−1 as well. The value of this linear functional on
Im ∂k+1 is 0.

Lemma 11.2 The cohomology space Hk is naturally dual to the homology
space Hk, that is, any two k-cocycles differing by a coboundary determine
the same linear functionals on the space Hk.

11.2 Comultiplication in homology and mul-
tiplication in cohomology

Let X be a simplicial complex, and let H∗(X), H∗(X) be its homology and
cohomology, respectively. Our goal in this section is to define a multiplica-
tion in cohomology H∗(X). Recall that a multiplication on a vector space V
is a linear mapping

m : V ⊗ V → V,

where V ⊗ V is the tensor square of the vector space V (the vector space
freely spanned by the elements ei ⊗ ej for any basis e1, . . . , edim V in V ,
i, j = 1, . . . ,dim V ).

If a vector space V is endowed with a multiplication m, then its dual
vector space V ∨ is endowed with a natural comultiplication µ : V ∨ →
V ∨ ⊗ V ∨ defined as follows:

µ(f)(v1 ⊗ v2) = f(m(v1, v2))

for an arbitrary f ∈ V ∨. Conversely, a comultiplication µ : V ⊗ V → V on
a vector space V induces a multiplication m : V ∨ ⊗ V ∨ → V ∨ on the dual
space V ∨ according to the rule

m(f1 ⊗ f2)(v) = (f1 ⊗ f2)(µ(v)).

Pick a numbering of the vertices of X. We are going to define an opera-
tion of comultiplication on H∗(X), that is, a linear operation µ : H∗(X)→
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H∗(X)⊗H∗(X). Let us start with defining the operation µ on the space of
chains C∗(X). For a k-simplex [v0, v1, . . . , vk], we set

µ : [v0, v1, . . . , vk]→
k∑
i=0

[v0, v1, . . . , vi]⊗ [vi, . . . , vk]

and extend the operation to linear combinations of simplices by linearity.
Note that

µ([v0, v1, . . . , vk]) ∈ C0(X)⊗Ck(X)⊕C1(X)⊗Ck−1(X)⊕· · ·⊕Ck(X)⊕C0(X),

so that the operation µ is graded.

Lemma 11.3 The comultiplicaton µ : C∗(X) → C∗(X) ⊗ C∗(X) descends
to a graded comultiplication µ : H∗(X)→ H∗(X)⊗H∗(X) that is indepen-
dent of the choice of the numbering of the vertices of the simplicial com-
plex X.

We denote this comultiplication by the same letter µ.
Multiplication m : H∗(X) ⊗ H∗(X) on the cohomology H∗(X) of a

simplicial complex X results from the comultiplication µ in H∗(X) and
duality between H∗(X) and H∗(X).

11.3 Homology and cohomology of Cartesian
product

Another, but an equivalent way to introduce multiplication in cohomology
exploits three facts:

• there is a natural mapping i : X → X×X of any topological space X
to its Cartesian square taking any point x ∈ X to the point (x, x) ∈
X ×X on the diagonal;

• a continuous mapping f : X → Y induces a cohomology homomor-
phism f∗ : H∗(Y )→ H∗(X) in the opposite direction;

• there is a natural isomorphism between the cohomology H∗(X × Y )
of the Cartesian product X × Y of two simplicial complexes and the
tensor product H∗(X)⊗H∗(Y ).

These facts imply that there is a natural linear mapping i∗ : H∗(X) ⊗
H∗(X) ≡ H∗(X ×X)→ H∗(X), hence a multiplication on H∗(X).
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Exercise 11.4 The canonical simplicial decomposition of the product

[v0, v1, . . . , vk]× [v′0, v
′
1, . . . , v

′
l]

of two simplicies of dimensions k and l is defined as follows. The (k + l)-
dimensional simplices are given by sequences [(v0, v

′
0), . . . , (vi, v

′
j), . . . , (vk, v

′
l)]

of length k + l + 1 such that there are no coinciding pairs and the indices
in both the sequence of first coordinates v0, . . . , vi, . . . , vk and the sequence
of second coordinates v′0, . . . , v

′
j , . . . , v

′
l are nondecreasing. Prove that this is

indeed a simplicial decomposition of the product of two simplices.

Note that the requirement in the exercise means that any two subsequent
pairs of vertices (vi, v

′
j) in a sequence of vertices of a (k + l)-simplex differ

in the index of only one of the coordinates, and the difference is exactly 1.
Therefore, the (k+l)-simplices in the canonical simplicial decomposition are
in one-no-one correspondence with rook paths in a (k+1)×(l+1)-rectangle
leading from the left uppermost square to the right lowermost one and going
either down or right.

Exercise 11.5 ΣX — X. , ΣX .

Exercise 11.6 , , m+ n- m- n- .

Exercise 11.7 , 4- B4 S2 ∂B4 = S3 → S2. , . , .
, S2 → S3 , .
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Simplicial complexes are a rather efficient tool in combinatorial repre-
sentation of topological objects. Nevertheless, they often lead to laborious
computations, since the number of simplices may be large. CW complexes
provide a way to simplify computations, since the number of cells in a CW
complex representing a topological space usually can be chosen much less
than that of simplices. And constructing cell decompositions is not more
complicated than simplicial decompositions.

12.1 CW complexes

Definition 12.1 A (finite) CW complex is a topological space X endowed
with a splitting into a disjoint union of finitely many topological subspaces,
called open cells, and continuous mappings fi, one for each cell, from closed
unit balls in Euclidean spaces to X such that

• the restriction of the map fi to the interior of the unit ball is a home-
omorphism to the i th open cell; we say that the i th open cell has the
same dimension as the unit ball;

• the restriction of each fi to the boundary of the unit ball takes this
boundary to a union of open cells of smaller dimension.

The image of the closed ball under the mapping fi is called the i th
closed cell of the CW-complex. The maximal dimension of open cells in a
CW-complex is called the dimension of the CW-complex.

Example 12.2 Each n-simplex is naturally a CW-complex. Moreover,
each simplicial complex is naturally a CW-complex, with open cells of di-
mension k being the interiors of the k-simplices.

Example 12.3 One can make a CW-complex of the sphere S2 by choosing
two distinct points on the equator for 0-dimensional cells, the two half-
equators connecting them for the 1-dimensional cells. Then there are two
open 2-dimensional cells represented by the upper and the lower hemispheres,
two open 1-cells represented by the two halves of the equator, and two open
0-cells, which are the chosen points. The mappings fi are obvious.

Even simpler CW-complex representing S2 is obtained if we take for the
only 0-cell an arbitrary point in S2, and its complement for the 2-cell. The

mapping f : D
2 → S2 then contracts the boundary ∂D

2
= S1 of the closed

unit disk to the chosen point.
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Exercise 12.4 Construct a CW-decomposition of the 3-sphere S3.

Exercise 12.5 Construct a CW-decomposition of the projective plane RP2.

Exercise 12.6 Construct a CW-decomposition of an orientable surface of
genus g containing a single 0-cell and a single 2-cell. How many 1-cells does
this decomposition have?

12.2 Homology of CW-complexes

To each finite CW-complex X, we associate a chain complex of Abelian
groups. Let Ck(X) denote the group of k-chains spanned over Z or Z2 by
open k-cells in X. The union of the closures of open k-cells in X forms the
k-skeleton of X.

In order to define the differential ∂k : Ck(X) → Ck−1(X), we must

define its action on each open k-cell. Let f : D
k → X be the corresponding

map of the closed k-disk. The differential ∂k takes an open k-cell to a linear
combination of open (k − 1)-cells:∑

di(f)ck−1i ,

where the sum is taken over all (k − 1)-cells ck−1i in X and the coefficients
di(f) are defined as follows.

By contracting the complement to the open cell ck−1i in the (k − 1)-
skeleton of X, we make the closure c̄k−1i of this open cell into the (k − 1)-
sphere Sk−1. The restriction of the mapping f to the boundary sphere

∂D
k

= Sk−1, after this contraction, becomes a mapping Sk−1 → Sk−1.
The degree of this mapping is well defined, since both the source and the
target sphere have well-defined fundamental class. This is obvious over Z2,
but is also true over Z. Indeed, each open cell in X is an image of an open
oriented ball of the same dimension, whence is endowed with the induced
orientation. Therefore, the integer fundamental class of the (k − 1)-sphere
obtained by contracting the complement to a (k − 1)-cell in the (k − 1)-

skeleton of X is well-defined. In addition, the boundary ∂D
k

= Sk−1 of a
closed k-disc is also endowed with a natural orientation. We set the number
di(f) equal to the degree of the mapping Sk−1 → Sk−1 of the two oriented
spheres.
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Theorem 12.7 The homomorphisms ∂k thus defined make the sequence of
Abelian groups Ck(X) into a chain complex.

Homology of this complex are called the cellular homology of X.

Exercise 12.8 Check that for a simplicial decomposition of a topological
space X its cellular homology with coefficients in Z or Z2 coincide with the
corresponding simplicial homology.

Example 12.9 Consider the CW-complex splitting the sphere Sn, for n >
0, into two open cells: one of dimension 0, and its complement, which is an
open set of dimension n. Then the cellular homology of this CW complex
are Z (or Z2) in dimensions n and 0, and are 0 in all other dimensions,

Hk(Sn) =

 Z k = 0,
Z k = n,
0 k 6= 0, n.

We see that the cellular homology of the sphere coincide with the simplicial
one, but the computation in this case is much easier.

Theorem 12.10 The cellular homology of a given topological space X are
independent of the chosen CW-complex homeomorphic to X.

Corollary 12.11 If a topological space X admits a simplicial decomposi-
tion, then its simplicial homology, with coefficients in Z or Z2, coincide with
cellular homology. In particular, the Euler characteristic of a CW complex
defined as the alternating sum of the numbers of open cells of each dimension
is well-defined.

Exercise 12.12 Construct a CW-decomposition of the real projective space RPn

containing one open cell of each dimension from 0 to n. Using this decom-
position compute cellular homology of RPn with coefficients in Z,Z2.

Exercise 12.13 Construct a CW-decomposition of the complex projective
space CPn containing one open cell of each even dimension from 0 to 2n.
Using this decomposition compute cellular homology of CPn with coefficients
in Z,Z2.

Exercise 12.14 Construct a CW-decomposition of the orientable surface
of genus g. Using this decomposition compute its cellular homology with
coefficients in Z,Z2.
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Exercise 12.15 Construct a CW-decomposition of the nonorientable sur-
face of genus g. Using this decomposition compute its cellular homology with
coefficients in Z,Z2.

12.3 Manifolds

Pseudomanifolds are simplicial analogs of manifolds. In particular, each
compact manifold admits a representation as a finite pseudomanifold. Be-
fore introducing the notion of manifold, we define a smooth submanifold in
an Euclidean space.

Definition 12.16 A subset M ⊂ Rn is called an m-dimensional smooth
submanifold if each point A ∈ M possesses a neighborhood UA ⊂ Rn such
that the intersection M ∩ UA is the set of common zeroes of an (n − m)-
tuple of smooth functions f1, . . . , fn−m : UA → R such that their differentials
df1, . . . , dfn−m are linearly independent at A (or, which is the same, the rank
of the matrix of derivatives ∂f1

∂x1
. . . ∂f1

∂xn

. . . . . . . . .
∂fn−m

∂x1
. . . ∂fn−m

∂xn


is n−m).

Note that since the differentials depend on the point continuously, their
linear independency at A causes their linear independency at some neigh-
borhood of A (we do not require that the latter neighborhood coincides
with UA). The implicit function theorem implies that in some neighbor-
hood of each point A ∈ M local coordinates x′1, . . . , x

′
n can be chosen in

such a way that the intersection of M with this neighborhood is given by
the equations x′m+1 = · · · = x′n = 0. Then the coordinates x′1, . . . , x

′
m can

serve as local coordinates in M in some neighborhood of A.
A function f : M → R is said to be smooth if, written in any such system

of local coordinates, it is infinitely differentiable. A mapping F : M → N
of an m-dimensional submanifold M to an n-dimensional submanifold N is
said to be smooth if it is coordinatewise smooth when written in any system
of local coordinates at any point A ∈M and the point F (A) ∈ N . A smooth
mapping F : M → N is called a diffeomorphism if it is one-to-one and its
inverse F−1 : N →M also is smooth. Diffeomorphisms preserve dimensions
of the submanifolds.
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If there exists a diffeomorphism F : M → N , then the submanifolds M
and N are said to be diffeomorphic. Being diffeomorphic is an equivalence
relations on submanifolds. An m-dimensional manifold is an equivalence
class of m-dimensional submanifolds in Euclidean spaces (of arbitrary di-
mension).

Theorem 12.17 Each compact manifold admits a finite simplicial decom-
position.

12.4 Morse functions

Let M be an m-dimensional manifold, and let f : M → R be a smooth
function on M . If df is nonzero at a point A ∈ M , then there is a local
coordinate system (x1, . . . , xm) at a neighborhood of A such that

f(x) = f(A) + x1

at this neighborhood (any function can be linearized at its noncritical point).
A point A ∈ M is a critical point of f if the differential df is zero

at A, df |A = 0. At a critical point, a function cannot be linearized; its any
coordinate presentation has zero linear part. A critical point is said to be
nondegenerate if there is a system of local coordinates x1, . . . , xm around A
such that the function f has the form

f(x1, . . . , xm) = f(A)± x21 ± x22 ± · · · ± x2m;

in these coordinates. Here the number of squares coincides with the di-
mension m of M . If a critical point is nondegenerate, then the number of
positive squares and the number of negative squares do not depend on the
chosen coordinate system. The number of negative squares is called the
index of the critical point. A critical point of index 0 is a local minimum
of the function f , while a critical point of index m is a local maximum.
Critical points of index between 0 and m are called saddles.

The value of f at a critical point of f is called a critical value of f .
A function M → R with finitely many critical points, all of whom are
nondegenerate, is called a Morse function. If, in addition, the critical values
of a Morse function are pairwise distinct, then the function is said to be
strongly Morse.

Example 12.18 Let S1 ⊂ R2 be the unit circle in the Euclidean plane with
the coordinates (x, y). Obviously, the function y|S1 is a Morse function
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on S1. This Morse function has two critical points, one being a minimum,
of index 0, the other one the maximum, of index 1. Functions of this type
(restrictions of one of the coordinates of the ambient Euclidean space to the
submanifold) are called height functions. It often happens that there is a
Morse function among height functions.

Other useful type of functions is represented by distance functions. These
are functions of the form ρA(x) = ||x − A||2, where x ∈ M and A is an
arbitrary point in the ambient Euclidean space of M . For the unit circle, for
example, the distance function ρA(x) is a Morse function for all points A ∈
R2 with the exception of the origin. Indeed, the function ρ0(x) ≡ 1 is a
constant function on the circle, so that all its points are degenerate critical
ones.

Height functions can be considered as limit versions of (square roots of)
distance functions, as the base point A of the distance function ρA(·) goes
to infinity in the direction prescribed by the chosen coordinate.

Example 12.19 The torus S1 × S1 ⊂ R3 given, for example, by the para-
metric equation

(u, v) 7→ (8 + (3 + cos v) cosu, 3 + sin v, 4 + (3 + cos v) sinu)

together with the coordinate z provide a standard example of a Morse height
function. This Morse function has a single critical point of index 0, two
critical points of index 1, and a single critical point of index 1.

Exercise 12.20 Construct Morse functions on

• an orientable surface of genus 2;

• real projective plane RP2;

• complex projective plane CP2;

• Klein bottle.

Specify the critical points and their indices for each function.
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12.5 Constructing cell decomposition of a man-
ifold

A Morse function on a manifold provides a tool for constructing its cell
decomposition. Let M be an m-dimensional manifold, and let f : M → R
be a strongly Morse function on M .

Theorem 12.21 The manifold M is homotopy equivalent to a cell complex,
with the number of cells of dimension k equal to the number of singular
points of f of index k, for k = 0, 1, . . . ,m.

Corollary 12.22 (Weak Morse inequalities) The dimension of the vec-
tor space Hk(M,R) is at most the number of critical points of index k of M ,
for k = 0, 1, . . . ,m. The same is true for the Betti numbers bk(M) (which
are the ranks of the homology groups Hk(M,Z)).

We construct a CW-structure on M by considering how the part Mt

of M defined by the inequality

Mt = {x ∈M,f(x) ≤ t}

grows as t varies from −∞ to +∞. Note that since any manifold can be
represented as a submanifold in an Euclidean space, each manifold can be
endowed with a smooth Riemanniann structure that is induced from the
ambient Euclidean space. We suppose that one of these structures is picked
for M .

The process of growing splits into several kinds of steps.
Step 0. For t sufficiently small, the submanifold Mt is empty, since f ,

being a continuous function on a compact topological space, achieves its
minimal value.

Step 1. Let tmin be the minimal value of the function f on M , tmin =
Infx∈M{f(x)}. And let ε > 0 be such that f has no critical values on the
halfsegment (tmin, tmin + ε]. Then the topological space Mtmin+ε is homeo-
morphic to the closed m-disk Dm. Indeed, this statement follows from the
fact that a critical point that is a local minimum (which, in our case, is
even a global one) of the function has index 0 and the subspace Mtmin+ε is
homeomorphic to the subset {(x1, . . . , xm)|x21 + · · ·+x2m ≤ ε2}, which is the
m-disk.

Step 2. Let t0 be a noncritical value of the function f , and suppose
there are no critical values of f on the segment [t0, t0 + ε], ε > 0. Then the
two subspaces Mt0 and Mt0+ε are homeomorphic to one another.
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The proof uses the gradient vector field of the function f on the layer
Mt0+ε \Mt0 . Recall that, for a given Riemanniann structure 〈·, ·〉 on M ,
the gradient vector field grad f of a smooth function f : M → R is the
vector field such that 〈grad f, ·〉 = df . To the gradient vector field grad f ,
we associate a deformation retraction Mt0+ε → Mt0 in the following way:
each point of Mt0 remains fixed, while points in the layer Mt0+ε \Mt0 move
along the vector field − grad f with the velocity ε, until they reach the level
set f = t0 of f .

Exercise 12.23 Prove that the mapping df : TM → TR takes the vector
field grad f to the vector field ∂/∂t on R.

Step 3. Suppose there is a single critical value on the interval (t0, t0+ε).
Let k denote the index of the corresponding critical point. Then the space
Mt0+ε is homotopy equivalent to the space Mt0 with a k-cell attached.
Indeed, in order to prove this statement, it suffices to consider how the
subspace Mt changes in a neighborhood of a nondegenerate singular point.
A function with a singular point of index k admits a coordinate presentation

f(x1, . . . , xm) = −x21 − · · · − x2k + x2k+1 + · · ·+ x2m

(we assume that f vanishes at the singular point). In particular, for m = 2,
k = 1, we pass from the subset

−x21 + x22 < −ε

to the subset
−x21 + x22 < ε,

for ε > 0. The result is homotopy equivalent to attaching a segment to the
subset

−x21 + x22 < −ε,

the ends of the segment being attached to different connected components
of the subset.

For m = 3, k = 1, the domain

−x21 + x22 + x23 < −ε

is bounded by the hyperboloid

−x21 + x22 + x23 = −ε
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of two sheet and consists of two connected components. The domain

−x21 + x22 + x23 < ε,

bounded by a hyperboloid of one sheet is homotopy equivalent to the initial
one with a segment (a cell of dimension 1) attached, the two ends being
attached to different connected components of the initial domain.

On the other hand, for m = 3, k = 2, the domain

−x21 − x22 + x23 < −ε

is bounded by the hyperboloid

−x21 − x22 + x23 = −ε

of one sheet and consists of a single connected components. The domain

−x21 − x22 + x23 < ε,

bounded by a hyperboloid of two sheet is homotopy equivalent to the initial
one with a 2-disc (a cell of dimension 2) attached, the boundary circle of
the disc attached to the circle x23 = 0, −x21−x22 = −ε, in the initial domain.

For arbitrary n and k the situation is exactly the same: the domain

−x21 − · · · − x2k + x2k+1 + · · ·+ x2m < ε

is homotopy equivalent to the domain

−x21 − · · · − x2k + x2k+1 + · · ·+ x2m < −ε

with the boundary sphere of the k-disc attached along the sphere −x21 −
· · · − x2k = −ε, xk+1 = · · · = xm = 0.

12.6 Existence of Morse functions

Morse functions exist on each manifold. Moreover, Morse functions are
dense in the space of all smooth functions (endowed with any reasonable
topology). The same is true for strong Morse functions.

Lemma 12.24 If M is a compact smooth manifold, then there is a function
f : M → R having finitely many critical points. Moreover, there is a Morse
function. Moreover, there is a strong Morse function.
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Indeed, let M be represented by a smooth m-dimensional submanifold
in RN . For a point A ∈ RN , denote by ρA : RN → R the function defined
as

ρA(x) = ||x−A||2,

that is, the square of the distance between a point x and the point A. This
function obviously is smooth, hence its restriction ρA : M → R also is
smooth. We claim that there is a Morse function (and even a strong Morse
function) among the functions ρA, for different A.

Consider the mapping E : RN × RN → RN taking a point (x, v) to the
point x+ v, E : (x, v) 7→ x+ v. Consider the restriction of this mapping to
the smooth submanifold T⊥M of RN × RN , which consists of points (x, v)
such that x ∈ M , and v is orthogonal to the tangent plane TxM to M
at x. The dimension of the submanifold T⊥M is N . The restriction of E
to T⊥M is a smooth mapping of an N -dimensional manifold to RN . The
critical points of E : T⊥M → RN are those points where the rank of its
differential dE is less than N . According to Sard’s lemma, the set of critical
values of E (the values of E at the critical points) has measure zero in the
range RN .

Now, take for A an arbitrary point in RN that is not a critical value of E.
Then the function ρA : M → R is a Morse function. Indeed, a point x ∈M
is a critical point of ρA iff the vector A − x is orthogonal to M at x. For
a compact manifold M , each line orthogonal to a given tangent plane TxM
contains only finitely many points such that x is a degenerate singular point
of the function ρA. These points are exactly the critical values of E (the
focal points of the submanifold M).

The following exercise completes the proof of Lemma 12.24.

Exercise 12.25 Prove that in any neighborhood of a point A ∈ RN such
that the function ρA is Morse there is a point A′ such that the function ρA′

is strongly Morse on M .

12.7 Poincaré duality

Theorem 12.26 For an orientable manifold M of dimension m, we have
Hi(M,R) = Hm−i(M,R), for k = 0, 1, . . . ,m.

Corollary 12.27 (Poincaré duality) There is a nondegenrate pairing
Hi(M,R)×Hm−i(M,R)→ R.
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Indeed, the corollary follows from the theorem and the natural identifi-
cation between Hi(M,R) and the dual vector space to Hi(M,R).

We give two proofs of this theorem.
The first proof uses the fact that a manifold admits a simplicial subdivi-

sion. Let δ be a simplex of dimension k in M . We associate to this simplex
a cell Dδ of dimension m−k in M in the following way. For each simplex ∆
of dimension m, we define the intersection of Dδ with ∆ as the convex hull
of the barycentres of all subsets of the vertices of ∆ that contain δ. The
cell Dδ is, by definition, the union of all these intersections over all sim-
plices ∆ of maximal dimension in M . It is clear that the dimension of the
cell Dδ is m− k, and that the cells Dδ, for all δ, form a CW-decomposition
of M . This CW-decomposition is said to be dual to the initial simplicial
complex structure. For m = 2 this construction coincides with that of the
dual graph for a given triangulation of a surface.

Now, each k-dimensional cycle in the simplicial decomposition of M
defines a linear functional on (m − k)-chains of M constructed from the
dual CW-decomposition: the value of such a cycle on a chain of cells is the
sum of intersection indices of the simplices of the cycle with the cells of the
chain. Here the intersection index of a simplex δ with the cell Dδ is ±1, the
sign depending on the chosen orientations, and it is 0 with all other cells.
The constructed pairing depends on the homology class of the chain rather
than on the chain itself, whence descends to the homology level.

The second proof exploits Morse functions and the duality between the
CW-complex structure based on a Morse function f and its opposite −f ,
which also is a Morse function. The k-cell we attach to the subspace Mt0−ε,
for a critical point of index k of f , can be treated as the lower separatrix
disk. By definition, the lower separatrix manifold of a critical point of a
function f : M → R consists of those points y ∈ M that approach this
critical point along the gradient vector field grad f . Respectively, the upper
separatrix manifold of a critical point consists of those points y ∈ M that
approach this critical point along the gradient vector field − grad f . For a
Morse critical point of index k, f(x1, . . . , xm) = −x21 − · · · − x2k + x2k+1 +
· · ·+x2m, the lower separatrix manifold is the coordinate plane xk+1 = · · · =
xm = 0, and the function f is a negatively determined quadratic form on
it, while the upper separatrix manifold is the coordinate plane x1 = · · · =
xk = 0, and the function f is a positively determined quadratic form on
it. All points in Rm not belonging to the two submanifolds demonstrate
hyperbolic behavior: they first approach the origin under the vector field
grad f (or − grad f), and then go away from it. The two submanifolds are
transversal to one another and, in addition, orthogonal with respect to the



Cellular homology 93

metric in the ambient Euclidean space.
The dimension of the lower separatrix disc is k, while that of the upper

separatrix disc is m−k. The intersection index of a k-cycle and an (m−k)-
cycle consisting of these cells is equal to the algebraic number of intersection
points of these complementary discs, with the signs defined by the chosen
orientations, see details in the next Chapter.
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