Сопряженные пространства и операторы. Рефлексивность

- **3.1.** Пусть $X = \mathbb{R}_p^2$ плоскость, снабженная нормой $\|\cdot\|_p$, и пусть $X_0 = \{(x,0) : x \in \mathbb{R}\} \subset X$ «ось абсцисс». Зададим функционал $f_0 \colon X_0 \to \mathbb{R}$ формулой $f_0(x,0) = x$. Ясно, что $\|f_0\| = 1$. Сколько существует линейных функционалов на X, продолжающих f_0 и имеющих норму 1? (Рассмотрите всевозможные $p \in [1, +\infty]$.)
- **3.2.** Существует ли такая функция $f \in L^2[0,1]$, что $\int_0^1 f(t)g(t) dt = g(0)$ (a) для каждого многочлена g?
- **3.3.** Пусть X нормированное пространство, $X_0 \subset X$ замкнутое векторное подпространство, $h \in X \setminus X_0$. Докажите, что существует такой $f \in X^*$, что ||f|| = 1, $f|_{X_0} = 0$ и $f(h) = \operatorname{dist}(h, X_0)$.
- **3.4.** Постройте изометрические изоморфизмы (a) $\ell^{\infty} \xrightarrow{\sim} (\ell^1)^*$; (b) $\ell^1 \xrightarrow{\sim} (c_0)^*$;
- (c) $\ell^q \xrightarrow{\sim} (\ell^p)^*$, где $1 < p, q < +\infty$ и 1/p + 1/q = 1. Можно ли тем же способом построить изометрический изоморфизм $\ell^1 \cong (\ell^\infty)^*$?
- **3.5-В.** Докажите, что c_0 не является топологически изоморфным сопряженному ни к какому нормированному пространству.
- **3.6-В.** Пусть (X, μ) пространство с σ -конечной мерой. Постройте изометрические изоморфизмы (a) $L^{\infty}(X, \mu) \xrightarrow{\sim} (L^{1}(X, \mu))^{*}$; (b) $L^{p}(X, \mu) \xrightarrow{\sim} (L^{q}(X, \mu))^{*}$, где $1 < p, q < +\infty$ и 1/p + 1/q = 1.

Подсказка. Для доказательства сюръективности построенных отображений пригодится теорема Радона–Никодима.

3.7. Докажите, что на любом бесконечномерном нормированном пространстве существует неограниченный линейный функционал.

Подсказка: воспользуйтесь тем, что в любом векторном пространстве есть алгебраический базис (т.е. максимальное линейно независимое подмножество).

- **3.8.** Докажите, что нормированное пространство сепарабельно тогда и только тогда, когда в нем есть плотное векторное подпространство не более чем счетной размерности.
- 3.9. Докажите, что размерность бесконечномерного банахова пространства несчетна.
- **3.10.** Докажите, что пространства c_0 , C[a,b], ℓ^p , $L^p[a,b]$, $L^p(\mathbb{R})$ при $p<\infty$ сепарабельны, а ℓ^∞ , $C_b(\mathbb{R})$, $L^\infty[a,b]$ и $L^\infty(\mathbb{R})$ несепарабельны.
- **3.11.** (a) Докажите, что каждое нормированное пространство X может быть изометрически вложено в $\ell^{\infty}(S)$ для некоторого множества S. (b) Докажите, что каждое сепарабельное нормированное пространство X может быть изометрически вложено в ℓ^{∞} .
- **3.12.** Пусть X нормированное пространство.
- (a) Докажите, что если X^* сепарабельно, то и X сепарабельно.
- (b) Верно ли обратное?
- (c) Покажите, что не существует топологического изоморфизма между $(\ell^{\infty})^*$ и ℓ^1 .
- 3.13. Докажите, что
- (а) гильбертово пространство рефлексивно;
- (b) c_0 нерефлексивно;
- (c) ℓ^1 нерефлексивно;
- (d) $L^1[a,b]$ нерефлексивно;
- (e) C[a,b] нерефлексивно.

- **3.14** (сопряженный оператор). Пусть X и Y нормированные пространства, $T: X \to Y$ ограниченный линейный оператор. Определим отображение $T^*: Y^* \to X^*$ формулой $T(f) = f \circ T$. Покажите, что T^* ограничен и $\|T^*\| = \|T\|$.
- 3.15. Опишите в явном виде сопряженные следующих операторов:
- (a) диагональный оператор в ℓ^p (где $1 \le p < \infty$) или в c_0 (см. задачу 2.9);
- (b) операторы левого сдвига T_ℓ и правого сдвига T_r , действующие в ℓ^p (где $1 \leqslant p < \infty$) или в c_0 следующим образом:

$$T_{\ell}(x_1, x_2, \ldots) = (x_2, x_3, \ldots), \qquad T_r(x_1, x_2, \ldots) = (0, x_1, x_2, \ldots);$$

- (c) оператор двустороннего сдвига, действующий в $\ell^p(\mathbb{Z})$ (где $1 \leqslant p < \infty$) или в $c_0(\mathbb{Z})$ по правилу $T(x)_i = x_{i-1}$ $(i \in \mathbb{Z})$;
- (d) оператор «первообразной» в $L^p[0,1], 1 \le p < \infty$ (см. задачу 2.11);
- (e) интегральный оператор Гильберта-Шмидта в $L^2(X,\mu)$ (см. задачу 2.12).
- **3.16.** Пусть X нормированное пространство и $i_X \colon X \to X^{**}$ каноническое вложение. Докажите, что для каждого оператора $T \in \mathscr{B}(X,Y)$ следующая диаграмма коммутативна:

$$X \xrightarrow{T^{**}} Y^{**}$$

$$i_X \uparrow \qquad \uparrow i_Y$$

$$X \xrightarrow{T} Y$$

- **3.17.** Пусть X и Y банаховы пространства и $T\colon X\to Y$ ограниченный линейный оператор. Докажите, что T является топологическим (соответственно, изометрическим) изоморфизмом тогда и только тогда, когда этим свойством обладает его сопряженный $T^*\colon Y^*\to X^*$. (Tepmuhonorum: топологический изоморфизм = линейный гомеоморфизм.)
- **3.18.** Пусть X нормированное пространство, $i_X\colon X\to X^{**}$ каноническое вложение. Найдите связь между операторами $i_{X^*}\colon X^*\to X^{***}$ и $i_X^*\colon X^{***}\to X^*$.
- **3.19.** (a) Докажите, что банахово пространство X рефлексивно тогда и только тогда, когда X^* рефлексивно.
- **(b)** Докажите, что ℓ^1 , ℓ^∞ , $L^\infty[a,b]$ нерефлексивны.