HANDOUT (AICTOK) 2.
CRASH COURSE IN REPRESENTATION THEORY

A A KIRILLOV

The text below is the second handout to my course ” Topics in the modern
representation theory.”

1. BASIC DEFINITIONS

Consider first the case of a finite group G. In a wide sense, representa-
tion of this group means any realization of an abstract group G as a group
of transformation of some mathematical object.

The simplest object is a finite set X with cardinality |X| = n. In this way
we get a so-called permutational representation of GG, i.e. a homomorphism
a: G — Sy, the group of permutations of n symbols.

The next simple object is a n-dimensional vector space V over some field
F. We get a so-called linear representation of G, i.e. a homomorphism
m: G — Aut(V), the group of invertible linear operators in V.

Any choice of a basis in V establishes an isomorphism of Aut(V') with the
group GL(n, F') of n x n invertible matrices with elements from F. So, we
can consider 7 as a matrix-valued function on G, satisfying

(g192) = w(g1)m(g2) and w(g™") = (m(g))”".

We shall consider mainly the cases F' = C or R and call them complex or
real representation.

A linear representation (m, V') is called

a) reducible, if the space V has a subspace Vi C V', which is stable under
the action of all operators m(g), g € G; otherwise, it is called irreducible.

Algebraically, reducibility means that by an appropriate choice of a basis
in V, all representation operators acquire the block-triagular form:

m(g) = < m(()g ) ?22((99)) > :

b) decomposable if the space V is a direct sum: V = V; @ Vs, where V; are
stable under the action of all operators 7(g), g € G; otherwise, it is called
indecomposable.
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Algebraically, decomposability means that by an appropriate choice of a
basis, all operators m(g) become block-diagonal:

m(g) = ( még) W;zg) > :

c¢) orthogonal (resp. unitary) if V' admits a G-invariant inner product.
Show that for orthogonal and unitary representations the property a) implies
b): any reducible representation is decomposable.

Exercise 2. Show that for any complex or real representation (m, V') of
a finite group G there exists a G-invariant inner product in V.

Let (71, V1) and (2, V2) be two representations of the same group G over
the same field F'. An operator A : V3 — V5 is called intertwining operator
(or, simply intertwiner), if the following diagram is commutative:

Vl m1(9) Vl

Al lA for all g € G.

v 29y,

Let Homg(V7, V2) be the set of all intertwiners between Vi, Va. It is clear
that it is a vector space over F. The dimension of this space is denoted
i(my, m2) and is called intertwining number for 7, m2. Representations
1, o are called equivalent, if they admit an invertible intertwiner. In
appropriate bases equivalent representations are given by the same matrix-
valued function. Therefore, there is no reason to distinguish equivalent
representations and consider the equivalence classes as main object.

Physicists inwented a convenient short name unirrep for unitary irre-
ducible representations. The set of equivalence classes of unirreps of a group
G is called the dual object to GG and is denoted GG. For an abelian G the
set G has itself a group structure and is called a dual group to G.

Exercise 3. Show, that for the cyclic group G = Z/nZ the dual group
G is isomorphic to G. (But there is no canonical isomorphism.)

2. FIRST RESULTS

Theorem 1 (Schur’s Lemma). If w1 and mo are irreducible, then

) 1 if m1, mo are equivalent,
(1) i(my, m2) = .
0 otherwise.

Hint. 1. Assume that there exist a non-zero intertwiner A : Vi — V5.
Then i(m1, m3) > 1. The subspaces ker A C V; and im A C V5 are G-stable
(check it!). For an irreducible representation every G-stable subspace is
either {0}, or the whole space. Since A # 0, it can be only if ker A = {0}
and im A = V5. Hence, A establishes an equivalence of 71 and 5. So, we can



assume 7w, = w9 and A = 1. For any other intertwiner B and any number
A € C the linear combination B — A -1 an intertwiner, hence, either zero, or
invertible. Hence, any intertwiner has the form A - 1 and i(7, m2) = 0.But
the equation det(B — A - 1) = 0 has a solution.

2. If i(m, m2) = 0, there is no non-zero intertwiners. O

In the space Fun(G) of real or complex functions on G there is a natural
G-invariant inner product

(2) (f1. f2)a Zﬁ

gEG

Let (m, V) be a unirrep of a finite group G. Choose an orthonormal basis
B = {vi, va,..., vp} in V. The functions m;;(g) = (7(g)vi, vj), 1 < i, < n,
are called matrix elements of 7.

Theorem 2 (Orthogonality relations). a) If 7 is irreducible, then

L ifi=k =1
3 i — J dimV ifi ) ’
®) (T, TG { 0 otherwise.
b) If T and 7' are not equivalent, then
(4) (M3 T)a =0 for all i, 5, k, 1.

Hint. a) For any operator A € Hom(V V') define the ”averaged” operator

(5) = g 7l Ax(a).

geG

Check that A is an intertwiner between V, V’. Since 7, 7’ are irreducible,
it must be zero or invertible. The part b) follows.
If m = «/, then A must be a scalar operator c¢- 1. Clearly, tr A = tr A.

Therefore, ¢ = dfanV' Taking A = Ej;, we get the part a). O

As a corollary we get:

Proposition 1. For a finite group G the set G is also finite.

3. CHARACTERS AND CONJUGACY CLASSES

Let (m, V) be a representation of G. The matrix-valued function = de-
termines the scalar function on G: g — trm(g), which is called character
of m and is denoted xr(g) (or, simply x(g), if 7 is understood). Note, that
this function does not depend on the choice of a basis in V.

The remarkable fact is that the character determines the representation
up to equivalence.

Proposition 2. Two representations of a finite group are equivalent, iff
they have the same character.



Recall that two elements g1, g2 from G are called conjugate, if
(6) g2 =2 ‘gz for some z€G.

The set of all elements, conjugated to g is called a conjugacy class and
is denoted by C(g), or [g]. The collection of all conjugacy classes in G we
denote by CI(G).

Exercise 4. a) Show that [¢g1] = [g2] iff there exist z,y € G such that
g1 = 1Y, g2 = Yr.

b) Show that any character x is a constant function on any conjugacy
class [g].

Every z € G defines an inner automorphism A(x) of G, acting by the
formula
A(x): g — g% :=a 1ga.
The orbits of this action are exactly conjugacy classes. Let FunG(G) denote
the subspace of functions on @, invariant under inner automorphisms.

Proposition 3. The characters of unirreps of G form an orthonormal basis
in the subspace Fun®(Q).

It follows from orthogonality relations for matrix elements. As a corollary
we get

Proposition 4.

(7) a) |CUG)| = |G, b (dim m)? =Gl

AeqG

4. FUNCTORS RES AND IND

Let G be a finite group and H C G be a subgroup. For any representation
(m, V) of G we can restrict the map m: G — AutV to the subgroup H
and obtain a representation (7|, V) of H. It is denoted Res%m. The
correspondence 7 ~» Res&m defines a functor from the category Rep(G)
of representations of G to the category Rep(H) of representations of H. It
admits a remarkable dual functor Ind% from Rep(H) to Rep(G), defined as
follows.

For a representation (p, W) of the group H consider the space L(G, H, p)
of W-valued functions ¢ on G, satisfying the condition

(8) o(hg) = p(h)p(g) forall heH, geaq.

Clearly, this space is stable under the right shifts on G. We define the
induced representation m = Ind% in the space V. = L(G, H, p) by the
formula

(9) (7(9)¢)(s) = #(d'9).



Exercise 5. Show that dim Ind gp = % dim p.

There is another, often more convenient, definition of this representation.
Let X = H\G be the set of right H-cosets in G. For every coset x € X
choose a representative s(z) € x C G. The map = — s(x) is a section of
the natural projection p: G — X, i.e. has the property p o s = Id.

Every element g € G can be uniquely written in the form

(10) g = hs(z) for some h € H, z € X,
thus providing the identification
G~HxX,g~ (h, z), where z=p(g), h=g(s(z))™ .

We can now identify the space L(G, H, p) with the space W-valued functions
on X. Namely, a function ¢ € L(G, H, p) corresponds to the function
f € Fun(X, W) given by f(z) = ¢(s(z)). In this notation the induced
representation takes the form

(11) (7(9)f) @) = A, 9)(x9).

where the operator-valued function A is defined as follows. Take the element
s(z)g € G and write it, using (??), in the form

(12) Master equation : s(x)g = h(z, g)s(zg).
Then put A(z, g) = p(h(z, g)).

In particular, when p is the trivial 1-dimensional representation pg = 1,
the induced representation Ind%po is the so-called geometric representa-
tion of G by shifts in the space Fun(X).

Thus, induced representations are the natural generalization of geometric
representations: instead of numerical functions on an homogeneous space
X = H\G we consider the sections of a G-vector bundle over X, defined by
a representation p of H.

Exercise 6. Show, that the formula (??) defines a representation® of G iff
there exists a representation (p, W) of H and an invertible operator-valued
function B on X, such that

A(z, g) = B(zg)p(h(z, g))B(z) ™",

where h(z, g) is defined by the Master equation (?7) above. In this case the
representation 7 is equivalent to Indgp.

Now, I explain in what sense the functors Res and Ind are dual. Recall,
that for any pair of representation of a finite group we have defined above
the intertwining number which plays, in a sense, the role of inner product.

Ne., n(g1g2) = m(g1)w(g2) and w(e) = 1.



Theorem 3 (Frobenius duality). Let H C G, m € Rep(G), p € Rep(H).
Then

(13) i(Resgim, p) = i(m, Indf;p) = (x|t xp)1-

The so-called left regular (resp. right regular) representation of G
acts in the space Fun(G) by the formula

(Riesn(9)f) @) = F(g7"2). (Brign(9)f) (@) = f(g).
They are equivalent and have dimension |G|.

Corollary. The regular representation of G contains any unirrep © with
multiplicity dim .

Indeed, the regular representation is equivalent to Ind{Ge}l.

5. SCHUR INDEX

Here we consider relations between real, complex and quaternionic repre-
sentations.

5.1. Real and complex representations. Any real representation (w, W)
of a group G in a real vector space W defines a complex representation 7C.
Indeed, since Mat(n, R) C Mat(n, C), the real matrix 7(g) can be consid-
ered as a complex matrix, which defines a linear operator in the complex
space W€ = W ®@g C.2 Note, that the character of 7€ is the same as the
character of .

On the other hand, any complex vector space V can be considered as
a real vector space Vg of double dimension. Namely, we replace a complex
number a+bi by a real 2-vector (a, b)!.3 So, a complex representation (7, V)
determines the real representation (mgr, Vg).

Warninig. The operations W ~» WC and V ~ Vi are not reciproque!
What are (WC)g and (Vi)©?

Not every real vector space W has the form Vg. It must have an additional
structure: the operator J € End W with J? = —1.

Further, for any complex representation (m, V') we can define the dual
or complex conjugate representation (7, V). In the appropriate bases in V
and V we have

7(g) =7w(g) forall g € G.

2If B is any basis in W, the elements of W€ are linear combinations of vectors from B
with complex coefficients.

3We prefer to deal with column vectors ( “ ) which by typographic reason are written

b
as a transposed row vector (a, b)*.

4There is another definition of a dual space and dual representation, for which the
notation (7", V*) is used. For finite dimensional representations of finite groups the two
definitions are equivalent and both notations can be used.



It is clear that x#(g9) = xx(g). So, the character y, takes real values, iff 7™
is equivalent to 7.

5.2. Complex and quaternionic representations. Recall, that the skew
field H of quaternions has a realization as a subalgebra of Mat(2, C). Namely,

a+bi —c+di
c+di a-—10bi

to a quaternion ¢ = a-+bi+cj+dk there corresponds the matrix

Since quaternions in general do not commute, there are two types of
quaternionic vector spaces: left and right. I prefer to realize W = H" as a
set of column n-vectors w with quaternionic entries. The "number” ¢ € H
acts from the right: w — wq. And an element A € EndV is a quaternionic
matrix from Mat(n, H) acting on a column vector by multiplication from
the left: w — Aw.

Every quaternionic space W gives rise a complex space W¢ of double di-
mension just by replacing a quaternionic entry ¢ = a + bi + ¢j + dk by the
complex column 2-vector (a+bi, c+di)t. Therefore, any real representation
(m, W) of a group G in a quaternionic vector space W defines a complex
representation 7¢ in the space W (since Mat(n, H) C Mat(2n, C)). The
character of this representation takes real values, because for any quater-
nionic matrix A € Mat(n, H) its image Ac € Mat(2n, C)) has real trace.

Not every complex vector space V has the form We. It must have an
additional structure: the antilinear® operator J on V with J? = —1.

5.3. Definition of the Schur index. It is interesting an important to
know when a given unirrep (7, V) comes from a real or from a quaternionic
representation, i.e., has the form (ﬂ'C, W(C), or (mc, We), for some real or
quaternionic representation (7, W). The evident necessary condition is: the
character x, must take real values. It turns out that this condition is also
sufficient.

Theorem 4. The unirrep (w, V) has a real character iff it comes from a
real or from quaternionic representation.

The reason is that a unirrep 7 with a real character is equivalent to its dual
7. Let J € Hom(V, V) be the invertible intertwiner. Then J € Hom(V, V)
will be also an intertwiner and so will be JJ € End(V) and JJ € End(V).
Since 7 and 7 are irreducible, we get JJ = c- 137, JJ = -1y. If we multiply
J by a constant )\, the numbers ¢, ¢ will be multiplied by |A|?. So, we can
assume ¢ = £1, which implies ¢ = ¢ = £1.

Exercise 7. Show that in the case ¢ = ¢ = 1 we have (7, V) = (&, W©)
for some real (7, W) and in the case ¢ = ¢ = —1 we have (7, V) = (n¢, We)
for some quaternionic (w, W).

The number c¢ is called the Schur index of the unirrep m with a real
character. If x, takes a non-real value, we put ind 7 = 0.

5An operator A on a complex vector space is antilinear if A(cv1 + v2) = ¢Avi + Avs.

)



5.4. Computation of the Schur index.

Theorem 5 (Schur formula).

. 1
(14) ind = 120 > xelo?).
geG

The proof needs some digression in the representation theory.

There are several useful functors in the category Vectr of vector spaces
over a given field F. We are interested in three of them: V ~» V ® V =
VO2 Vs S2(V), V ~» A2(V), called tensor square, symmetric square and
exterior square. They are related by the identity

VoV==5%V)o V).

Correspondingly, for any representation (7, V') we can define representations
792 8%(7), A%(m). We also can consider virtual functors, which are formal
linear combinations of genuine functors. E.g., for our purpose we shall use

the virtual functor Wy := S? — A2, If A is an operator in n-dimensional
space V with eigenvalues (A1,...,\,), then we have
trS7(A) =) Ny, tr AT (A) =) N, rTP(A) =D N
i<j 1<j i

Denote by X the character of the virtual representation W?(7). Then, by
putting A = 7(g) in the last formula above, we get X(g) = xx(¢°) and

(15) i 3o xa(6?) = (X, g = (8%(n), e — (A1), g
Gl =2

When y is a non-real character, then i(7, 7) = 0 and the space V®2 ~
Hom(V, V*) contains no G-invariant elements. Therefore, both summands
in the RHS of (??) vanish and RHS is zero.

When x, is real, then i(m, 7*) = 1 and V ® V contains a non-zero G-
invariant element J, which is unique, up to a scalar factor.

If indm = 1, then J belongs to S?(V) C V ® V and defines on V the
G-invariant real structure, i.e., an isomorphism of V with some WC. In this
case the RHS is equal 1.

If ind 7™ = —1, then J belongs to A%2(V) C V ® V and defines on V the
G-invariant quaternionic structure, i.e., an isomorphism of V' with some W¢.
In this case the RHS is equal -1.

We see, that in all cases LHS is equal ind . O

5.5. Groups of R-H type. There is a wide class of groups G for which
C(g) = C(g71) for all g € G. E.g., all symmetric groups S,, and the group
SU(2) are of this type. I propose for them the name R-H-groups, because
of the following



Proposition 5. Every unirrep © of a R-H-group G has a real character,
hence comes from a real or quaternionic representation. Conversely, every
group with real characters of unirreps is a R-H-group.

An interesting feature of R-H-group is

Theorem 6. Let G be a R-H-group. Denote by Inv(G) the set of all invo-
lutions in G, i.e., elements, satisfying g> = e. Then

(16) > dim m, = [Inv(G)].

\eG

The proof is based on the study of the operator ¢ in Fun(G), acting by
(cf)(9) = f(g~"). We compute the trace of o in two different way. First,
1 ifg=
choose in the space Fun(G) the basis of functions d,(g) = n x
0 otherwise.

It is clear that o sends d, to J,-1 and tro = [Inv(G)|.

Now, consider in Fun(G) the basis of matrix elements (7y);; of unirreps.
Decomposition of a function f with respect to this basAis associates to f its
Fourier transform, which is a matrix-valued function f on G. The explicit
formula is

(17) o) = |é,| 3" Ho)mi(9).

geG

The original function f is reconstructed from fby the formula

(18) flg) =" tr(FN)ma(g))-
\eG

Let us describe the action of ¢ in terms of Fourier transform. Let \* € CA¥

denote the class of unirreps which contains (7)* and choose (7))* as myx.

~

Then, clearly, f(\*) = (]?()\))* So, unirreps, for which A* # A do not
contribute to tro.

Consider now the case \* = A. We can write the operator m)(g) as a
complex form of real or a quaternionic matrix.
Exercise 8. Show that
— {f()\)t if A is of real type

19 A) = ~
(19) ()N —f(N)t if X is of quaternionic type.

Corollary. The contribution of A = \* € G in trace of o is dim 7y for real
type and — dim 7y for quaternionic type.
0
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