HANDOUT (Λ ICTOK) 2. CRASH COURSE IN REPRESENTATION THEORY

A.A.KIRILLOV

The text below is the second handout to my course "Topics in the modern representation theory."

1. Basic definitions

Consider first the case of a finite group G. In a wide sense, **representation** of this group means any realization of an abstract group G as a group of transformation of some mathematical object.

The simplest object is a finite set X with cardinality |X| = n. In this way we get a so-called **permutational** representation of G, i.e. a homomorphism $\alpha: G \to S_n$, the group of permutations of n symbols.

The next simple object is a *n*-dimensional vector space V over some field F. We get a so-called **linear** representation of G, i.e. a homomorphism $\pi: G \to \operatorname{Aut}(V)$, the group of invertible linear operators in V.

Any choice of a basis in V establishes an isomorphism of $\operatorname{Aut}(V)$ with the group GL(n, F) of $n \times n$ invertible matrices with elements from F. So, we can consider π as a matrix-valued function on G, satisfying

$$\pi(g_1g_2) = \pi(g_1)\pi(g_2)$$
 and $\pi(g^{-1}) = (\pi(g))^{-1}$.

We shall consider mainly the cases $F = \mathbb{C}$ or \mathbb{R} and call them complex or real representation.

A linear representation (π, V) is called

a) **reducible**, if the space V has a subspace $V_1 \subset V$, which is stable under the action of all operators $\pi(g), g \in G$; otherwise, it is called **irreducible**.

Algebraically, reducibility means that by an appropriate choice of a basis in V, all representation operators acquire the block-triagular form:

$$\pi(g) = \begin{pmatrix} \pi_1(g) & \pi_{12}(g) \\ 0 & \pi_2(g) \end{pmatrix};$$

b) **decomposable** if the space V is a direct sum: $V = V_1 \oplus V_2$, where V_i are stable under the action of all operators $\pi(g), g \in G$; otherwise, it is called **indecomposable**.

Date: Jan 2019.

Algebraically, decomposability means that by an appropriate choice of a basis, all operators $\pi(g)$ become block-diagonal:

$$\pi(g) = \left(\begin{array}{cc} \pi_1(g) & 0\\ 0 & \pi_2(g) \end{array}\right)$$

c) **orthogonal** (resp. **unitary**) if V admits a G-invariant inner product. Show that for orthogonal and unitary representations the property a) implies b): any reducible representation is decomposable.

Exercise 2. Show that for any complex or real representation (π, V) of a finite group G there exists a G-invariant inner product in V.

Let (π_1, V_1) and (π_2, V_2) be two representations of the same group G over the same field F. An operator $A: V_1 \to V_2$ is called **intertwining** operator (or, simply **intertwiner**), if the following diagram is commutative:

$$V_1 \xrightarrow{\pi_1(g)} V_1$$

$$A \downarrow \qquad \qquad \downarrow_A \quad \text{for all } g \in G.$$

$$V_2 \xrightarrow{\pi_2(g)} V_2$$

Let $\operatorname{Hom}_G(V_1, V_2)$ be the set of all intertwiners between V_1, V_2 . It is clear that it is a vector space over F. The dimension of this space is denoted $i(\pi_1, \pi_2)$ and is called **intertwining number** for π_1, π_2 . Representations π_1, π_2 are called **equivalent**, if they admit an invertible intertwiner. In appropriate bases equivalent representations are given by the same matrixvalued function. Therefore, there is no reason to distinguish equivalent representations and consider the **equivalence classes** as main object.

Physicists inwented a convenient short name **unirrep** for unitary irreducible representations. The set of equivalence classes of unirreps of a group G is called the **dual object** to G and is denoted \hat{G} . For an abelian G the set \hat{G} has itself a group structure and is called a **dual** group to G.

Exercise 3. Show, that for the cyclic group $G = \mathbb{Z}/n\mathbb{Z}$ the dual group \widehat{G} is isomorphic to G. (But there is no canonical isomorphism.)

2. First results

Theorem 1 (Schur's Lemma). If π_1 and π_2 are irreducible, then

(1)
$$i(\pi_1, \pi_2) = \begin{cases} 1 & if \pi_1, \pi_2 \text{ are equivalent} \\ 0 & otherwise. \end{cases}$$

Hint. 1. Assume that there exist a non-zero intertwiner $A : V_1 \to V_2$. Then $i(\pi_1, \pi_2) \ge 1$. The subspaces ker $A \subset V_1$ and im $A \subset V_2$ are *G*-stable (check it!). For an irreducible representation every *G*-stable subspace is either $\{0\}$, or the whole space. Since $A \ne 0$, it can be only if ker $A = \{0\}$ and im $A = V_2$. Hence, *A* establishes an equivalence of π_1 and π_2 . So, we can assume $\pi_1 = \pi_2$ and A = 1. For any other intertwiner B and any number $\lambda \in \mathbb{C}$ the linear combination $B - \lambda \cdot 1$ an intertwiner, hence, either zero, or invertible. Hence, any intertwiner has the form $\lambda \cdot 1$ and $i(\pi_1, \pi_2) = 0$.But the equation $\det(B - \lambda \cdot 1) = 0$ has a solution.

2. If $i(\pi_1, \pi_2) = 0$, there is no non-zero intertwiners.

In the space $\operatorname{Fun}(G)$ of real or complex functions on G there is a natural G-invariant inner product

(2)
$$(f_1, f_2)_G = \frac{1}{|G|} \sum_{g \in G} f_1(g) \overline{f_2(g)}.$$

Let (π, V) be a unirrep of a finite group G. Choose an orthonormal basis $B = \{v_1, v_2, \ldots, v_n\}$ in V. The functions $\pi_{ij}(g) = (\pi(g)v_i, v_j), 1 \le i, j \le n$, are called **matrix elements** of π .

Theorem 2 (Orthogonality relations). a) If π is irreducible, then

(3)
$$(\pi_{ij}, \pi_{kl})_G = \begin{cases} \frac{1}{\dim V} & \text{if } i = k, \ j = l, \\ 0 & \text{otherwise.} \end{cases}$$

b) If π and π' are not equivalent, then

(4)
$$(\pi_{ij}, \pi'_{kl})_G = 0 \quad for \ all \quad i, j, k, l.$$

Hint. a) For any operator $A \in \text{Hom}(V, V')$ define the "averaged" operator

(5)
$$\overline{A} = \frac{1}{|G|} \sum_{g \in G} \pi'(g^{-1}) A \pi(g).$$

Check that \overline{A} is an intertwiner between V, V'. Since π, π' are irreducible, it must be zero or invertible. The part b) follows.

If $\pi = \pi'$, then \overline{A} must be a scalar operator $c \cdot 1$. Clearly, $\operatorname{tr} \overline{A} = \operatorname{tr} A$. Therefore, $c = \frac{\operatorname{tr} A}{\dim V}$. Taking $A = E_{ij}$, we get the part a).

As a corollary we get:

Proposition 1. For a finite group G the set \hat{G} is also finite.

3. Characters and conjugacy classes

Let (π, V) be a representation of G. The matrix-valued function π determines the scalar function on $G: g \mapsto \operatorname{tr} \pi(g)$, which is called **character** of π and is denoted $\chi_{\pi}(g)$ (or, simply $\chi(g)$, if π is understood). Note, that this function does not depend on the choice of a basis in V.

The remarkable fact is that the character determines the representation up to equivalence.

Proposition 2. Two representations of a finite group are equivalent, iff they have the same character.

Recall that two elements g_1, g_2 from G are called **conjugate**, if

(6)
$$g_2 = x^{-1}g_1x$$
 for some $x \in G$

The set of all elements, conjugated to g is called a **conjugacy class** and is denoted by C(g), or [g]. The collection of all conjugacy classes in G we denote by Cl(G).

Exercise 4. a) Show that $[g_1] = [g_2]$ iff there exist $x, y \in G$ such that

$$g_1 = xy, \ g_2 = yx.$$

b) Show that any character χ is a constant function on any conjugacy class [g].

Every $x \in G$ defines an **inner automorphism** A(x) of G, acting by the formula

$$A(x): g \mapsto g^x := x^{-1}gx.$$

The orbits of this action are exactly conjugacy classes. Let $\operatorname{Fun}^{G}(G)$ denote the subspace of functions on G, invariant under inner automorphisms.

Proposition 3. The characters of unirreps of G form an orthonormal basis in the subspace $Fun^{G}(G)$.

It follows from orthogonality relations for matrix elements. As a corollary we get

Proposition 4.

4. Functors Res and Ind

Let G be a finite group and $H \subset G$ be a subgroup. For any representation (π, V) of G we can restrict the map $\pi: G \to \operatorname{Aut} V$ to the subgroup H and obtain a representation $(\pi|_H, V)$ of H. It is denoted $\operatorname{Res}_H^G \pi$. The correspondence $\pi \rightsquigarrow \operatorname{Res}_H^G \pi$ defines a **functor** from the category $\mathcal{Rep}(G)$ of representations of G to the category $\mathcal{Rep}(H)$ of representations of H. It admits a remarkable dual functor Ind_H^G from $\mathcal{Rep}(H)$ to $\mathcal{Rep}(G)$, defined as follows.

For a representation (ρ, W) of the group H consider the space $L(G, H, \rho)$ of W-valued functions φ on G, satisfying the condition

(8)
$$\varphi(hg) = \rho(h)\varphi(g)$$
 for all $h \in H, g \in G$.

Clearly, this space is stable under the right shifts on G. We define the **induced** representation $\pi = \text{Ind}_{H}^{G}$ in the space $V = L(G, H, \rho)$ by the formula

(9)
$$(\pi(g)\varphi)(g') = \varphi(g'g).$$

Exercise 5. Show that dim $\operatorname{Ind}_{H}^{G} \rho = \frac{|G|}{|H|} \dim \rho$.

There is another, often more convenient, definition of this representation. Let $X = H \setminus G$ be the set of right *H*-cosets in *G*. For every coset $x \in X$ choose a representative $s(x) \in x \subset G$. The map $x \mapsto s(x)$ is a **section** of the natural projection $p: G \to X$, i.e. has the property $p \circ s = \text{Id}$.

Every element $g \in G$ can be uniquely written in the form

(10)
$$g = hs(x)$$
 for some $h \in H, x \in X$,

thus providing the identification

$$G \simeq H \times X, g \simeq (h, x), \text{ where } x = p(g), h = g(s(x))^{-1}.$$

We can now identify the space $L(G, H, \rho)$ with the space W-valued functions on X. Namely, a function $\varphi \in L(G, H, \rho)$ corresponds to the function $f \in \operatorname{Fun}(X, W)$ given by $f(x) = \varphi(s(x))$. In this notation the induced representation takes the form

(11)
$$\Big(\pi(g)f\Big)(x) = A(x, g)f(xg),$$

where the operator-valued function A is defined as follows. Take the element $s(x)g \in G$ and write it, using (??), in the form

(12) Master equation :
$$s(x)g = h(x, g)s(xg)$$

Then put $A(x, g) = \rho(h(x, g)).$

In particular, when ρ is the trivial 1-dimensional representation $\rho_0 \equiv 1$, the induced representation $\operatorname{Ind}_H^G \rho_0$ is the so-called **geometric representa**tion of G by shifts in the space $\operatorname{Fun}(X)$.

Thus, induced representations are the natural generalization of geometric representations: instead of numerical functions on an homogeneous space $X = H \setminus G$ we consider the sections of a *G*-vector bundle over *X*, defined by a representation ρ of *H*.

Exercise 6. Show, that the formula (??) defines a representation¹ of G iff there exists a representation (ρ, W) of H and an invertible operator-valued function B on X, such that

$$A(x, g) = B(xg)\rho(h(x, g))B(x)^{-1},$$

where h(x, g) is defined by the Master equation (??) above. In this case the representation π is equivalent to $\operatorname{Ind}_{H}^{G}\rho$.

Now, I explain in what sense the functors Res and Ind are dual. Recall, that for any pair of representation of a finite group we have defined above the intertwining number which plays, in a sense, the role of inner product.

¹I.e., $\pi(g_1g_2) = \pi(g_1)\pi(g_2)$ and $\pi(e) = 1$.

Theorem 3 (Frobenius duality). Let $H \subset G$, $\pi \in \mathcal{R}ep(G)$, $\rho \in \mathcal{R}ep(H)$. Then

(13)
$$i(\operatorname{Res}_{H}^{G}\pi, \rho) = i(\pi, \operatorname{Ind}_{H}^{G}\rho) = (\chi_{\pi}|_{H}, \chi_{\rho})_{H}.$$

The so-called **left regular** (resp. **right regular**) representation of G acts in the space Fun(G) by the formula

$$\left(R_{left}(g)f\right)(x) = f(g^{-1}x), \qquad \left(R_{right}(g)f\right)(x) = f(xg).$$

They are equivalent and have dimension |G|.

Corollary. The regular representation of G contains any unirrep π with multiplicity dim π .

Indeed, the regular representation is equivalent to $\operatorname{Ind}_{\{e\}}^G 1$.

5. Schur index

Here we consider relations between real, complex and quaternionic representations.

5.1. **Real and complex representations.** Any real representation (π, W) of a group G in a real vector space W defines a complex representation $\pi^{\mathbb{C}}$. Indeed, since $\operatorname{Mat}(n, \mathbb{R}) \subset \operatorname{Mat}(n, \mathbb{C})$, the real matrix $\pi(g)$ can be considered as a complex matrix, which defines a linear operator in the complex space $W^{\mathbb{C}} = W \otimes_{\mathbb{R}} \mathbb{C}^2$. Note, that the character of π^C is the same as the character of π .

On the other hand, any complex vector space V can be considered as a real vector space $V_{\mathbb{R}}$ of double dimension. Namely, we replace a complex number a+bi by a real 2-vector $(a, b)^t$.³ So, a complex representation (π, V) determines the real representation $(\pi_{\mathbb{R}}, V_{\mathbb{R}})$.

Warning. The operations $W \rightsquigarrow W^{\mathbb{C}}$ and $V \rightsquigarrow V_{\mathbb{R}}$ are not reciproque! What are $(W^{\mathbb{C}})_{\mathbb{R}}$ and $(V_{\mathbb{R}})^{\mathbb{C}}$?

Not every real vector space W has the form $V_{\mathbb{R}}$. It must have an additional structure: the operator $J \in \text{End } W$ with $J^2 = -1$.

Further, for any complex representation (π, V) we can define the **dual** or complex conjugate representation $(\overline{\pi}, \overline{V})$.⁴ In the appropriate bases in V and \overline{V} we have

$$\overline{\pi}(g) = \overline{\pi(g)}$$
 for all $g \in G$.

³We prefer to deal with column vectors $\begin{pmatrix} a \\ b \end{pmatrix}$ which by typographic reason are written as a transposed row vector $(a, b)^t$.

²If B is any basis in W, the elements of $W^{\mathbb{C}}$ are linear combinations of vectors from B with complex coefficients.

⁴There is another definition of a dual space and dual representation, for which the notation (π^*, V^*) is used. For finite dimensional representations of finite groups the two definitions are equivalent and both notations can be used.

It is clear that $\chi_{\overline{\pi}}(g) = \chi_{\pi}(g)$. So, the character χ_{π} takes real values, iff $\overline{\pi}$ is equivalent to π .

5.2. Complex and quaternionic representations. Recall, that the skew field \mathbb{H} of quaternions has a realization as a subalgebra of Mat(2, \mathbb{C}). Namely,

to a quaternion $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ there corresponds the matrix $\begin{pmatrix} a + bi & -c + di \\ c + di & a - bi \end{pmatrix}$.

Since quaternions in general do not commute, there are two types of quaternionic vector spaces: left and right. I prefer to realize $W = \mathbb{H}^n$ as a set of column *n*-vectors w with quaternionic entries. The "number" $q \in \mathbb{H}$ acts from the right: $w \mapsto wq$. And an element $A \in \text{End } V$ is a quaternionic matrix from $Mat(n, \mathbb{H})$ acting on a column vector by multiplication from the left: $w \mapsto Aw$.

Every quaternionic space W gives rise a complex space $W_{\mathbb{C}}$ of double dimension just by replacing a quaternionic entry $q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k}$ by the complex column 2-vector $(a+bi, c+di)^t$. Therefore, any real representation (π, W) of a group G in a quaternionic vector space W defines a complex representation $\pi_{\mathbb{C}}$ in the space $W_{\mathbb{C}}$ (since $\operatorname{Mat}(n, \mathbb{H}) \subset \operatorname{Mat}(2n, \mathbb{C})$). The character of this representation takes real values, because for any quaternionic matrix $A \in \operatorname{Mat}(n, \mathbb{H})$ its image $A_{\mathbb{C}} \in \operatorname{Mat}(2n, \mathbb{C})$) has real trace.

Not every complex vector space V has the form $W_{\mathbb{C}}$. It must have an additional structure: the antilinear⁵ operator J on V with $J^2 = -1$.

5.3. Definition of the Schur index. It is interesting an important to know when a given unirrep (π, V) comes from a real or from a quaternionic representation, i.e., has the form $(\pi^{\mathbb{C}}, W^{\mathbb{C}})$, or $(\pi_{\mathbb{C}}, W_{\mathbb{C}})$, for some real or quaternionic representation (π, W) . The evident necessary condition is: the character χ_{π} must take real values. It turns out that this condition is also sufficient.

Theorem 4. The unirrep (π, V) has a real character iff it comes from a real or from quaternionic representation.

The reason is that a unirrep π with a real character is equivalent to its dual $\overline{\pi}$. Let $J \in \operatorname{Hom}(V, \overline{V})$ be the invertible intertwiner. Then $\overline{J} \in \operatorname{Hom}(\overline{V}, V)$ will be also an intertwiner and so will be $J\overline{J} \in \operatorname{End}(\overline{V})$ and $\overline{J}J \in \operatorname{End}(V)$. Since π and $\overline{\pi}$ are irreducible, we get $J\overline{J} = c \cdot 1_{\overline{V}}, \overline{J}J = c' \cdot 1_V$. If we multiply J by a constant λ , the numbers c, c' will be multiplied by $|\lambda|^2$. So, we can assume $c = \pm 1$, which implies $c' = c = \pm 1$.

Exercise 7. Show that in the case c = c' = 1 we have $(\pi, V) = (\pi^{\mathbb{C}}, W^{\mathbb{C}})$ for some real (π, W) and in the case c = c' = -1 we have $(\pi, V) = (\pi_{\mathbb{C}}, W_{\mathbb{C}})$ for some quaternionic (π, W) .

The number c is called the **Schur index** of the unirrep π with a real character. If χ_{π} takes a non-real value, we put ind $\pi = 0$.

⁵An operator A on a complex vector space is antilinear if $A(cv_1 + v_2) = \overline{c}Av_1 + Av_2$.

5.4. Computation of the Schur index.

Theorem 5 (Schur formula).

(14)
$$ind \ \pi = \frac{1}{|G|} \sum_{g \in G} \chi_{\pi}(g^2).$$

The proof needs some digression in the representation theory.

There are several useful functors in the category $\mathcal{V}ect_F$ of vector spaces over a given field F. We are interested in three of them: $V \rightsquigarrow V \otimes V = V^{\otimes 2}$, $V \rightsquigarrow S^2(V)$, $V \rightsquigarrow \wedge^2(V)$, called tensor square, symmetric square and exterior square. They are related by the identity

$$V \otimes V = S^2(V) \oplus \wedge^2(V).$$

Correspondingly, for any representation (π, V) we can define representations $\pi^{\otimes 2}$, $S^2(\pi)$, $\wedge^2(\pi)$. We also can consider **virtual** functors, which are formal linear combinations of genuine functors. E.g., for our purpose we shall use the virtual functor $\Psi_2 := S^2 - \wedge^2$. If A is an operator in *n*-dimensional space V with eigenvalues $(\lambda_1, \ldots, \lambda_n)$, then we have

$$\operatorname{tr} S^{2}(A) = \sum_{i \leq j} \lambda_{i} \lambda_{j}, \quad \operatorname{tr} \wedge^{2} (A) = \sum_{i \leq j} \lambda_{i} \lambda_{j}, \quad \operatorname{tr} \Psi^{2}(A) = \sum_{i} \lambda_{i}^{2}.$$

Denote by \mathcal{X} the character of the virtual representation $\Psi^2(\pi)$. Then, by putting $A = \pi(g)$ in the last formula above, we get $\mathcal{X}(g) = \chi_{\pi}(g^2)$ and

(15)
$$\frac{1}{|G|} \sum_{g \in G} \chi_{\pi}(g^2) = (\mathcal{X}, 1)_G = (S^2(\pi), 1)_G - (\wedge^2(\Pi), 1)_G$$

When χ_{π} is a non-real character, then $i(\pi, \overline{\pi}) = 0$ and the space $V^{\otimes 2} \simeq$ Hom (V, V^*) contains no *G*-invariant elements. Therefore, both summands in the RHS of (??) vanish and RHS is zero.

When χ_{π} is real, then $i(\pi, \pi^*) = 1$ and $V \otimes V$ contains a non-zero *G*-invariant element *J*, which is unique, up to a scalar factor.

If $\operatorname{ind} \pi = 1$, then J belongs to $S^2(V) \subset V \otimes V$ and defines on V the G-invariant real structure, i.e., an isomorphism of V with some $W^{\mathbb{C}}$. In this case the RHS is equal 1.

If $\operatorname{ind} \pi = -1$, then J belongs to $\wedge^2(V) \subset V \otimes V$ and defines on V the G-invariant quaternionic structure, i.e., an isomorphism of V with some $W_{\mathbb{C}}$. In this case the RHS is equal -1.

We see, that in all cases LHS is equal ind π .

5.5. Groups of \mathbb{R} - \mathbb{H} type. There is a wide class of groups G for which $C(g) = C(g^{-1})$ for all $g \in G$. E.g., all symmetric groups S_n and the group SU(2) are of this type. I propose for them the name \mathbb{R} - \mathbb{H} -groups, because of the following

Proposition 5. Every unirrep π of a \mathbb{R} - \mathbb{H} -group G has a real character, hence comes from a real or quaternionic representation. Conversely, every group with real characters of unirreps is a \mathbb{R} - \mathbb{H} -group.

An interesting feature of \mathbb{R} - \mathbb{H} -group is

Theorem 6. Let G be a \mathbb{R} - \mathbb{H} -group. Denote by Inv(G) the set of all involutions in G, i.e., elements, satisfying $g^2 = e$. Then

(16)
$$\sum_{\lambda \in \widehat{G}} \dim \pi_{\lambda} = |Inv(G)|.$$

The proof is based on the study of the operator σ in Fun(G), acting by $(\sigma f)(g) = f(g^{-1})$. We compute the trace of σ in two different way. First, choose in the space Fun(G) the basis of functions $\delta_x(g) = \begin{cases} 1 & \text{if } g = x \\ 0 & \text{otherwise.} \end{cases}$

It is clear that σ sends δ_x to $\delta_{x^{-1}}$ and tr $\sigma = |Inv(G)|$.

Now, consider in Fun(G) the basis of matrix elements $(\pi_{\lambda})_{ij}$ of unirreps. Decomposition of a function f with respect to this basis associates to f its Fourier transform, which is a matrix-valued function \hat{f} on \hat{G} . The explicit formula is

(17)
$$\widehat{f}(\lambda) = \frac{1}{|G|} \sum_{g \in G} f(g) \pi_{\lambda}^*(g)$$

The original function f is reconstructed from \hat{f} by the formula

(18)
$$f(g) = \sum_{\lambda \in \widehat{G}} \operatorname{tr}\left(\widehat{f}(\lambda)\pi_{\lambda}(g)\right)$$

Let us describe the action of σ in terms of Fourier transform. Let $\lambda^* \in \widehat{G}$ denote the class of unirreps which contains $(\pi_{\lambda})^*$ and choose $(\pi_{\lambda})^*$ as π_{λ^*} . Then, clearly, $\widehat{f}(\lambda^*) = (\widehat{f}(\lambda))^*$. So, unirreps, for which $\lambda^* \neq \lambda$ do not contribute to tr σ .

Consider now the case $\lambda^* = \lambda$. We can write the operator $\pi_{\lambda}(g)$ as a complex form of real or a quaternionic matrix.

Exercise 8. Show that

(19)
$$\widehat{\sigma(f)}(\lambda) = \begin{cases} \widehat{f}(\lambda)^t & \text{if } \lambda \text{ is of real type} \\ -\widehat{f}(\lambda)^t & \text{if } \lambda \text{ is of quaternionic type.} \end{cases}$$

Corollary. The contribution of $\lambda = \lambda^* \in \widehat{G}$ in trace of σ is dim π_{λ} for real type and $-\dim \pi_{\lambda}$ for quaternionic type.

E-mail address: kirillov@math.upenn.edu