Лекция 3-19. δ -образные последовательности и теоремы о приближении

1 Гладкость функций и убывание коэффициентов Фурье

Теорема 1 Пусть функция $f \in C^m(S^1), c_k$ – ее коэффициенты Фурье. Тогда $|c_k| < C|k|^{-m}$.

Доказательство Индукция по m.

База индукции: m=0. Пусть $f\in C(S^1)$. Тогда |f|< C,

$$2\pi c_k = \int_{S^1} f(x)e^{-ikx}dx, \ |c_k| < 2\pi C.$$

Шаг индукции: переход от m к m+1. Пусть $f' \in C^m(S^1)$, $d_k, k \in \mathbb{Z}$ – коэффициенты Фурье функции f'. Тогда, по предположению индукции, $|d_k| < C|k|^{-m}$. Далее, по определению коэффициентов Фурье

$$2\pi d_k = \int_{S^1} f'(x)e^{-ikx}dx = \int_{S^1} e^{-ikx}df(x) = ik \int_{S^1} f(x)e^{-ikx}dx = ik \cdot 2\pi c_k$$

Следовательно,

$$|c_k| \le \frac{|d_k|}{|k|} \le \frac{C}{|k|^{m+1}}.$$

Следствие 1 Ряд Фурье дважды гладкой функции сходится равномерно.

Справедливо более сильное утверждение

Следствие 2 Ряд Фурье дважды гладкой функции сходится К НЕЙ равномерно.

Это доказывается так. Сначала мы установим полноту системы E. Мы уже знаем, что непрерывные функции плотны в L_2 на отрезке. Поэтому для доказательства полноты системы E достаточно доказать следующую теорему Вейерштрасса:

Теорема 2 Любая непрерывная функция на $[-\pi, \pi]$ с одинаковыми значениями на концах может быть (равномерно) приближена тригонометрическими многочленами.

Из полноты системы E, по теореме Рисса следует, что ряд Фурье любой функции из $L_2([-\pi,\pi])$ сходится к ней в L_2 . Если ряд Фурье функции f сходится равномерно к какой-то функции и сходится к f в L_2 , значит он сходится к f равномерно.

Дальнейшая часть лекции преследует две цели: доказать полноту системы E в пространстве $L_2([-\pi,\pi])$ и ввести важный инструмент анализа - δ -образные последовательности.

2 δ -функция Дирака.

В 30-е годы прошлого века великий физик Поль Дирак ввел и использовал δ -функцию, обладающую следующими свойствами.

$$\delta(x) = 0$$
 при $x \neq 0$
= ∞ при $x = 0$
 $\int \delta(x) = 1$.

Разумеется, такой функции не бывает. Тем не менее, для нее может быть "доказана"

 $exttt{thm:0}$ Теорема 3 Для любой непрерывной функции $f \in C(\mathbb{R}), \ \int_{\mathbb{R}} f(x) \delta(x) dx = f(0).$

Доказательство По теореме о среднем, $\int_{\mathbb{R}} f(x)\delta(x)dx = \int_{-\varepsilon}^{\varepsilon} f(x)\delta(x)dx = f(c)\int_{-\varepsilon}^{\varepsilon} \delta(x)dx = f(c)$. При $\varepsilon \to 0$, $c \to 0$, а интеграл с одной стороны, не меняется, а с другой, стремится к f(0).

3 δ -образная последовательность.

Формализацией понятия δ -функции служит δ -образная последовательность.

Определение 1 Последовательность (Δ_n) непрерывных или кусочно-непрерывных функций на прямой называется δ -образной последовательностью, если выполняются следующие требования:

a)
$$\Delta_n \geq 0$$
 b) $\int_{\mathbb{R}} \Delta_n \to 1$ c) $\forall \varepsilon > 0 \int_{\mathbb{R} \setminus [-\varepsilon, \varepsilon]} \Delta_n \to 0$.

Когда область интегрирования не указана - это по умолчанию \mathbb{R} .

thm:1 Теорема 4 Для любой финитной непрерывной функции f,

$$\int f(x)\Delta_n(x)dx := (f, \Delta_n) \to f(0)$$

 $npu \ n \to \infty$.

Доказательство $(f,\Delta_n)=I_n+J_n,$ $I_n=\int_{\mathbb{R}\setminus[-\varepsilon,\varepsilon]}f(x)\Delta_n(x)dx,$ $J_n=\int_{[-\varepsilon,\varepsilon]}f(x)\Delta_n(x)dx$

$$|I_n| \le \max |f| \cdot \int_{\mathbb{R}\setminus[-\varepsilon,\varepsilon]} \Delta_n(x) dx \to 0, \ n \to \infty$$

в силу свойства c). По теореме о среднем, применимой, поскольку $\Delta_n \geq 0$,

$$J_n = f(c) \int_{-\varepsilon}^{\varepsilon} \Delta_n(x) dx.$$

Значение f(c) близко к f(0) при малом ε , а значение $\int_{-\varepsilon}^{\varepsilon} \Delta_n(x) dx$ близко к 1 при большом n. Следовательно, I_n мало, а J_n близко к f(0).

4 Равномерность сходимости.

Следствие 3 Пусть $f \in C^0(\mathbb{R})$, $\Delta_n - \delta$ -образная последовательность. Тогда $f_n(y) = \int f(x) \Delta_n(x-y) dx \to f(y)$.

thm:3 Теорема 5 В условиях следствия, стремление f_n к f равномерно: $f_n \rightrightarrows f$ на \mathbb{R} .

Доказательство Хотим доказать, что $\forall \alpha > 0 \exists N : \forall n > N$

$$|f_n(y) - f(y)| < \alpha. \tag{1}$$

Берем ε так, что оѕс $[y-\varepsilon,y+\varepsilon]f<\frac{\alpha}{4}$ \forall y. Такое ε существует, поскольку f финитна и непрерывна. В силу b) и c) $\int_{[-\varepsilon,\varepsilon]}\Delta_n(x)dx\to 1$, $\int_{\mathbb{R}\setminus[-\varepsilon,\varepsilon]}\Delta_n(x)dx\to 0$ при $n\to\infty$. Тогда неравенство (1) выполнено при выбранном ε и достаточно большом n. Действительно, пусть

$$f_n = I_n + J_n, \ I_n(y) = \int_{\mathbb{R}\setminus [y-\varepsilon, y+\varepsilon]} f(x)\Delta_n(x-y)dx,$$
$$J_n(y) = \int_{[y-\varepsilon, y+\varepsilon]} f(x)\Delta_n(x-y)dx.$$

Имеем:

$$|I_n(y)| \le \max|f| \int_{\mathbb{R}\setminus[y-\varepsilon,y+\varepsilon]} \Delta_n(x-y) dx = \max|f| \int_{\mathbb{R}\setminus[-\varepsilon,\varepsilon]} \Delta_n(x) dx < \frac{a}{2}$$

при достаточно большом n. Далее,

$$|J_n(y) - f(y)| = |\int_{\varepsilon}^{\varepsilon} f(x+y)\Delta_n(x)dx - f(y)| = |f(y+c)\int_{\varepsilon}^{\varepsilon} \Delta_n(x)dx - f(y)| \le |f(y+c) - f(y)| \int_{\varepsilon}^{\varepsilon} \Delta_n(x)dx + \max|f||1 - \int_{\varepsilon}^{\varepsilon} \Delta_n(x)dx| < \frac{\alpha}{2}$$

при достаточно большом n. Это доказывает теорему.