Дополнительные главы алгебры. Домашнее задание к 20 февраля.

Задачи сдаются в письменном виде 20 февраля в 14:00 (перед контрольной). На полный балл достаточно решить любые 6 пунктов задач. Номер варианта зависит от первой буквы вашей фамилии: 1-й: А-Д; 2-й: Е–К; 3-й: Л–П; 4-й: Р–Я.

Вариант 1.

- **Задача 1.** Разложите в произведение неприводимых в $\mathbb{Q}[x,y]$: $x^2y^4 + 2x^3y^2 + x^4 + x^2y^2 + 2x^3 + x^2 + 2xy 1$.
- **Задача 2.** Пусть $P(x,y) = 4x^2 y^2 2y 2$; $Q(x,y) = 4x^2 + y^2 + 2y + 4x 2$.
 - (a) Найдите пересечение кривых P(x, y) = 0 и Q(x, y) = 0.
 - (6) Разложите $\mathbb{C}[x,y]$ -модуль $\mathbb{C}[x,y]/(P(x,y),Q(x,y))$ в прямую сумму неразложимых.
- **Задача 3.** Найдите нормальную форму $\mathbb{Z}[i]$ -модуля с образующими x,y и соотношениями $(2+i)x+(10-5i)y=0, \ (3+2i)x+15y=0.$
 - **Задача 4.** Найдите количество автоморфизмов абелевой группы $\mathbb{Z}/120\mathbb{Z} \oplus \mathbb{Z}/15\mathbb{Z}$.
- Задача 5. (а) Комплексные матрицы A и B коммутируют, причем минимальный многочлен A равен $x^2 + 4$, а минимальный многочлен B равен $(x 1)^3$. Найдите минимальный возможный размер таких матриц (т.е. приведите пример и докажите, что меньшего размера не бывает).
 - (б) Тот же вопрос для вещественных матриц.

Вариант 2.

- **Задача 1.** Разложите в произведение неприводимых в $\mathbb{Q}[x,y]$: $x^2y^4 + 2x^3y^2 + x^4 + x^2y^2 + 2x^3 2xy^2 x^2 2x + 1$.
 - Задача 2. Пусть $P(x,y) = 4x^2 y^2 + 2y 2$; $Q(x,y) = 4x^2 + y^2 2y 4x 2$.
 - (a) Найдите пересечение кривых P(x, y) = 0 и Q(x, y) = 0.
 - **(б)** Разложите $\mathbb{C}[x,y]$ -модуль $\mathbb{C}[x,y]/(P(x,y),Q(x,y))$ в прямую сумму неразложимых.
- **Задача 3.** Найдите нормальную форму $\mathbb{Z}[i]$ -модуля с образующими x,y и соотношениями $(2-i)x+(3-2i)y=0,\ 10x+(15+5i)y=0.$
 - Задача 4. Найдите количество автоморфизмов абелевой группы $\mathbb{Z}/40\mathbb{Z} \oplus \mathbb{Z}/45\mathbb{Z}$.
- **Задача 5.** (а) Комплексные матрицы A и B коммутируют, причем минимальный многочлен A равен $x^2 + 4$, а минимальный многочлен B равен $(x^2 + 1)^3$. Найдите минимальный возможный размер таких матриц (т.е. приведите пример и докажите, что меньшего размера не бывает).
 - (б) Тот же вопрос для вещественных матриц.

Вариант 3.

Задача 1. Разложите в произведение неприводимых в $\mathbb{Q}[x,y]$: $x^2y^6 + 2x^3y^3 + x^4 + x^2y^4 + 2x^3y + x^2y^2 + 2xy^3 - y^2$.

Задача 2. Пусть $P(x,y) = 9x^2 - y^2 - 2y - 2$; $Q(x,y) = 9x^2 + y^2 + 2y + 6x - 2$.

- (a) Найдите пересечение кривых P(x, y) = 0 и Q(x, y) = 0.
- (б) Разложите $\mathbb{C}[x,y]$ -модуль $\mathbb{C}[x,y]/(P(x,y),Q(x,y))$ в прямую сумму неразложимых.

Задача 3. Найдите нормальную форму $\mathbb{Z}[i]$ -модуля с образующими x,y и соотношениями $(3+i)x+(3-2i)y=0, \ (10+10i)x+15y=0.$

Задача 4. Найдите количество автоморфизмов абелевой группы $\mathbb{Z}/10\mathbb{Z} \oplus \mathbb{Z}/135\mathbb{Z}$.

Задача 5. (а) Комплексные матрицы A и B коммутируют, причем минимальный многочлен A равен $(x^2+4)(x^2-4)$, а минимальный многочлен B равен $(x-1)^3$. Найдите минимальный возможный размер таких матриц (т.е. приведите пример и докажите, что меньшего размера не бывает).

(б) Тот же вопрос для вещественных матриц.

Вариант 4.

Задача 1. Разложите в произведение неприводимых в $\mathbb{Q}[x,y]$: $x^2y^6 + 2x^3y^3 + x^4 + x^2y^4 + 2x^3y - 2xy^4 - x^2y^2 - 2xy^2 + y^2$.

Задача 2. Пусть $P(x,y) = 9x^2 - y^2 + 2y - 2$; $Q(x,y) = 9x^2 + y^2 - 2y + 6x - 2$.

- (a) Найдите пересечение кривых P(x, y) = 0 и Q(x, y) = 0.
- (6) Разложите $\mathbb{C}[x,y]$ -модуль $\mathbb{C}[x,y]/(P(x,y),Q(x,y))$ в прямую сумму неразложимых.

Задача 3. Найдите нормальную форму $\mathbb{Z}[i]$ -модуля с образующими x,y и соотношениями $(2-i)x+(3-2i)y=0, \ (10+5i)x+25y=0.$

Задача 4. Найдите количество автоморфизмов абелевой группы $\mathbb{Z}/60\mathbb{Z} \oplus \mathbb{Z}/15\mathbb{Z}$.

Задача 5. (а) Комплексные матрицы A и B коммутируют, причем минимальный многочлен A равен $(x^2+4)^2$, а минимальный многочлен B равен $(x-1)^2$. Найдите минимальный возможный размер таких матриц (т.е. приведите пример и докажите, что меньшего размера не бывает).

(б) Тот же вопрос для вещественных матриц.