Дополнительные главы алгебры. Домашнее задание к 20 марта.

Задачи сдаются в письменном виде 20 марта в 14:00 (перед контрольной). На полный балл достаточно решить любые 6 пунктов задач. Номер варианта зависит от первой буквы вашей фамилии: 1-й: А-Д; 2-й: Е–К; 3-й: Л–П; 4-й: Р–Я.

Вариант 1.

- **Задача 1.** (a) Найдите кольцо целых поля $\mathbb{Q}(\sqrt{13})$. (б) Вычислите дискриминант этого кольца.
- **Задача 2.** Найдите группу Галуа многочлена $x^7 7x^5 + 14x^3 35x^2 8x + 5$ над \mathbb{Q} .
- Задача 3. (а) Покажите, что поле частных кольца $\mathbb{C}[x,y]/(y^3+x^2+xy)$ изоморфно $\mathbb{C}(t)$, где $t=\frac{x}{y}$. (б) Найдите целое замыкание кольца $\mathbb{C}[x,y]/(y^3+x^2+xy)$ в своем поле частных.
- **Задача 4.** Укажите какие-нибудь образующие идеала в кольце $\mathbb{C}[x,y,z]$, состоящем из многочленов, обращающихся в нуль во всех точках вида (t,t^3,t^4) и во всех точках вида (u^2,ut,t^2) .
- **Задача 5.** Укажите какую-нибудь конечную систему образующих алгебры инвариантов действия группы $\mathbb{Z}/5\mathbb{Z}$ на $\mathbb{C}[x,y]$ преобразованиями $x\mapsto \xi x,\ y\mapsto \xi^3 y,$ где ξ примитивный корень пятой степени из единицы.

Вариант 2.

- Задача 1. (a) Найдите кольцо целых поля $\mathbb{Q}(\sqrt{11})$. (б) Вычислите дискриминант этого кольца.
- **Задача 2.** Найдите группу Галуа многочлена $x^7 7x^5 14x^4 + 14x^3 21x^2 8x + 2$ над \mathbb{Q} .
- **Задача 3.** (а) Покажите, что поле частных кольца $\mathbb{C}[x,y]/(y^3+x^2+xy-y^2)$ изоморфно $\mathbb{C}(t)$, где $t=\frac{x}{y}$.
 - (б) Найдите целое замыкание кольца $\mathbb{C}[x,y]/(y^3+x^2+xy-y^2)$ в своем поле частных.
- **Задача 4.** Укажите какие-нибудь образующие идеала в кольце $\mathbb{C}[x,y,z]$, состоящем из многочленов, обращающихся в нуль во всех точках вида (t,t^3,t^4) и во всех точках вида $(u^2+t^2,2ut,u^2-t^2)$.
- **Задача 5.** Укажите какую-нибудь конечную систему образующих алгебры инвариантов действия группы $\mathbb{Z}/5\mathbb{Z}$ на $\mathbb{C}[x,y]$ преобразованиями $x\mapsto \xi x,\ y\mapsto \xi^2 y,$ где ξ – примитивный корень пятой степени из единицы.

Вариант 3.

- **Задача 1.** (a) Найдите кольцо целых поля $\mathbb{Q}(\sqrt{-13})$. (б) Вычислите дискриминант этого кольца.
- **Задача 2.** Найдите группу Галуа многочлена $x^7 7x^5 21x^3 + 35x^2 8x + 5$ над \mathbb{Q} .
- **Задача 3.** (a) Покажите, что поле частных кольца $\mathbb{C}[x,y]/(y^3+x^2+2xy+y^2)$ изоморфно $\mathbb{C}(t)$, где $t=\frac{x}{y}$.
 - (б) Найдите целое замыкание кольца $\mathbb{C}[x,y]/(y^3+x^2+2xy+y^2)$ в своем поле частных.
- **Задача 4.** Укажите какие-нибудь образующие идеала в кольце $\mathbb{C}[x,y,z]$, состоящем из многочленов, обращающихся в нуль во всех точках вида (t,t^2,t^3) и во всех точках вида $(u^2,2ut,t^2)$.
- **Задача 5.** Укажите какую-нибудь конечную систему образующих алгебры инвариантов действия группы $\mathbb{Z}/5\mathbb{Z}$ на $\mathbb{C}[x,y]$ преобразованиями $x\mapsto \xi x,\ y\mapsto \xi^{-2}y,$ где ξ примитивный корень пятой степени из единицы.

Вариант 4.

- **Задача 1.** (a) Найдите кольцо целых поля $\mathbb{Q}(\sqrt{-11})$. (б) Вычислите дискриминант этого кольца.
- **Задача 2.** Найдите группу Галуа многочлена $x^7 7x^5 + 7x^4 + 14x^3 + 21x^2 8x + 2$ над \mathbb{Q} .
- Задача 3. (а) Покажите, что поле частных кольца $\mathbb{C}[x,y]/(y^3+x^2-y^2)$ изоморфно $\mathbb{C}(t)$, где $t=\frac{x}{y}$. (б) Найдите целое замыкание кольца $\mathbb{C}[x,y]/(y^3+x^2-y^2)$ в своем поле частных.
- **Задача 4.** Укажите какие-нибудь образующие идеала в кольце $\mathbb{C}[x,y,z]$, состоящем из многочленов, обращающихся в нуль во всех точках вида (t,t^2,t^3) и во всех точках вида $(u^2+t^2,2ut,u^2-t^2)$.
- **Задача 5.** Укажите какую-нибудь конечную систему образующих алгебры инвариантов действия группы $\mathbb{Z}/5\mathbb{Z}$ на $\mathbb{C}[x,y]$ преобразованиями $x\mapsto \xi x,\ y\mapsto \xi^{-3}y,$ где ξ примитивный корень пятой степени из единицы.