
LECTION 6.

A MODEL FOR THE GROUP Sn

A.A.KIRILLOV

1. General setting

1.1. Representations with a simple spectrum. In this section we con-
sider unitary representations π of a finite group G in a Hilbert space V .1

We say that a representation π has a simple spectrum, if it is a direct
sum of pairwise non-equivalent unirreps. Such representation are character-
ized by a simple algebraic condition.

Proposition 1. The representation (π, V ) has a simple spectrum, iff the
algebra of intertwining operators I(π, π) = EndG(V ) is commutative.

Proof. Let V = ⊕kVk be the decomposition of V into irreducible sub-
spaces. Choose an orthonormal basis Bk in every Vk and let B =

⋃
Bk.

Then B will be an orthonormal basis in V . We can assume that for every
pair of equivalent subrepresentations (π|Vi , π|Vj ) the bases Bi, Bj are chosen
so that matrices of π(g)|Vi and π(g)|Vi coincide. Then every intertwining op-
erator A in V has the matrix of block form with blocks Ak,l ∈ HomG(Vk, Vl),
which are zero when π|Vk and π|Vl are not equivalent and can be arbitrary
scalar matrices ck,l · 1, when π|Vk ' π|Vl .

We see that the algebra I(π, π) is isomorphic to ⊕kMat(µk, C), where µk
are multiplicities of irreducible components. �

1.2. Big subgroups. A subgroup H of a finite group G is called big, if the
following equivalent conditions are satisfied.

1. For every unirrep π of G, it restriction ResGHπ has a simple spectrum.

2. For every unirrep ρ of H, the induced representation IndGHρ has a
simple spectrum.

The equivalence follows from the Frobenius Formula

(1) i(ResGHπ, ρ) = i(π, IndGHρ).

Exercise 1. Let H, K are subgroups of G. If H ⊂ K ⊂ G and H is a big
subgroup of G, then so is K.

Date: Spring 2019.
1Actually, the notions we introduce below make sense in more general setting, namely,

for continuous unitary representations of compact topological groups. Most of the state-
ments also remain true in this situation.
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Exercise 2. ∗ Let C[G]H be the subalgebra in the group algebra C[G],
which consists of functions f , satsfying

f(hgh−1) = f(g) for all h ∈ H, g ∈ G.
The subgroup H is big, iff the subalgebra C[G]H is commutative.

Known examples. In the following pairs every group is a big subgroup
of the following one for n ≥ 1:

Sn ⊂ Sn+1, S2 × Sn ⊂ Sn+2, Un ⊂ Un+1,

U(1) ⊂ SU(2) SUn+1 ⊂ SUn+2, Spinn+2 ⊂ Spinn+3.

1.3. Definition of model representation. A representation π of a finite
group G, is called a model for G, if its decomposition into unirreps contains
every type with the multiplicity 1. Note, that this definition make sense
also for continuous representations of compact groups. The first example,
which was the source of the notion, is the representation of G = SO(3, R)
in L2(S2). Here the irreducible components have dimensions 2k + 1 and
consist of homogeneous polynomials of degree k in variables x, y, z. Later
many other examples of model representations were discovered (see [??][],[]).

Exercise 3. Show that the regular representation of G in C[G] has a simple
spectrum iff the group G is commutative.

2. Basic facts about Sn

2.1. Definitions and notations. The group Sn of permutations of n ob-
jects is the most important and most studied family of finite groups. By
definition, it is a group of automorphisms of Xn, a finite set with n elements.
Usually, Xn is realized as {1, 2, . . . , n}, so that there are natural inclusions:

X1 ⊂ X2 ⊂ · · · ⊂ Xn ⊂ . . . and S1 ⊂ S2 ⊂ · · · ⊂ Sn ⊂ . . . .
There are several ways do describe elements s ∈ Sn:

a) As a bijective function k 7→ s(k), 1 ≤ k ≤ n.

b) As a row vector
(
s(1), s(2), . . . , s(n)

)
∈ Nn.

c) As a graph Γ(s) of the form
1 2 . . . n− 1 n

1 2 . . . n− 1 n
, where the set V

of vertices is the union of two copies (upper and lower) of Xn and the set
A of arrows consists of ak, 1 ≤ k ≤ n, which joins the upper copy of k with
the lower copy of s(k).

A pair (i, j) ⊂ Xn × Xn is called bf inversion for s ∈ Sn, if i < j and
s(i) > s(j). The number of inversions is called the length of s and is
denoted l(s). It is equal to the number of the intersection points for the
arrows in Γ(s).
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Proposition 2. The function sgn s = (−1)l(s) is multiplicative:

sgn (s1s2) = sgn (s1) · sgn (s2)

and is the only non-trivial character of Sn.

2.2. Subgroups and conjugacy classes. For any partition of the set Xn

into disjoint parts X1, . . . , Xk we denote by YX1, ..., Xk the subgroup of Sn,
consisting of permutations, which preserve the partition. The subgroups
of this kind are called Young subgroups. As abstract groups, they are
determined up to isomorphism by the numbers λi = |Xi|, 1 ≤ i ≤ k, and
are isomorphic to one of the groups Yλ := Sλ1 × · · · × Sλk .

To any standard Young tableau T we associate two Young subgroups:
Yrow(T ) (resp. Ycol(T )) which correspond to the partitions of Xn into rows
(resp. columns) of T . Up to isomorphism, they are determined by the
corresponding Young diagram D (or by the partitions λ(D) and λ∗(D)).

Introduce also the notation srow(T ) (resp. scol(T )) for the element s ∈ Sn
which permutes cyclically the elements of every row (resp. every column)
of T . Sometimes, these elements are called horizontal (resp. vertical)
permutations.

It is well-known that every conjugacy class C ⊂ Sn contains a horizontal
(resp. vertical) permutation for an appropriate tableau T . Moreover,

Proposition 3. There is a bijection between conjugacy classes in Sn and
partitions λ ∈ Pn such that the class Cλ contains a horizontal permutation
for a tableau T of type λ (resp. a vertical permutation for a tableau T of the
dual type λ∗).

2.3. Representation of Sn, induced from Young subgroups. Let λ
be a partition of n. Denote by Xλ the set of all partitions of the set Xn =
{1, 2, . . . , n} into disjoint parts of cardinalities λ1, . . . , λk. It is clear that the
group Sn acts transitively on Xλ and the stabilizer of the point (X1, . . . , Xk)
is the Young subgroup we denoted above by Y (X1, . . . , Xk), or Yλ.

Consider two kinds of induced representation of Sn:

Πλ = IndSnYλ1 and Π′µ = IndSnYµ sgn ' Πµ ⊗ sgn .

The computation of the intertwining numbers between these representation
is a beautiful and non-trivial group-theoretic (and combinatorial) problem.
To describe the result, we have to introduce a partial order in the set Pn of
partitions. We say that λ dominates µ and write λ � µ if

(2) λ1 + · · ·+ λk ≥ µ1 + · · ·+ µk for all k ≥ 1.

Let λ, µ ∈ Pn be partitions.

Proposition 4. The table of intertwining numbers for representaions Πλ

and Π′µ have a unitriangular form:

(3) i(Πλ, Π′λ) = 1 and i(Πλ, Π′µ) = 0 unless λ � µ.
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The proof is based on a following combinatorial fact.

Lemma 1. Let λ does not dominate µ. Then for any standard tableau T
of shape λ and any standard tableau T ′ of shape µ, there are two numbers
i, j ∈ Xn such that they are situated in one row of T and in one column of
T ′.

As a corollary, we obtain the bijection between the set Ŝn of (equivalence
classes of) unirreps of Sn and the set Pn of partitions of n.

Indeed, the first relation (3) means that the (reducible) representations
Πλ and Π′λ have a unique unirrep in common. We denote this common
unirrep by πλ. The space Vλ of this representation contains a unique (up to
scalar factor) vector v+λ , which is invariant under all operators πλ(g), g ∈ Yλ.

It also contains a unique (up to scalar factor) vector v−λ , which is invariant
under all operators π′λ(g), g ∈ Yλ.

3. Vector bundles and induced representations

Let G be a group and H ⊂ G be a subgroup. Then there is the natural
restriction functor ResGH from the category of all representations of G,
denoted Rep(G), to the category Rep(H).

The notion of an induced representation was defined by G.Frobenius as a
dual functor IndGH fromRep(H) toRep(G), satisfying the duality formula:

(4) i(ResGHπ, ρ) = i(π, IndGH)ρ for all π ∈ Rep(G), ρ ∈ Rep(H).

The geometric version of this construction is based on the notion of vector
bundle, introduced below.

3.1. Vector bundles. An n-dimensional complex vector bundle L over
a topological space X is a topological space L, endowed with a continuous
map p : L → X such that for any x ∈ X the fiber Fx = p−1(x) has a
structure of n-dimensional complex vector space.

Such bundles form a category, where a morphism from (L1
p1→ X1) to

(L2
p2→ X2) is a commutative diagram of the form

L1 L2

X1 X2

φ

p1 p2

ψ

, where φ

and ψ are continuous maps with the additional condition: the restriction of
φ to every fiber Fx is a linear operator from Fx to Fψ(x).

Remark. In most applications the sets L and X are assumed to be a
smooth manifolds, the projection p is smooth and the bundle structure is
locally trivial.

The last property means that any point x ∈ X has a nejghborhood
U 3 x such that p−1(U) is isomorphic to the trivial bundle L0 = U × Cn
with the natural projection to U . I.e., we have a commutative diagram
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L0 U × Cn

U U

φ

p

ι

, where ι is the inclusion and for every x ∈ U the

restriction of φ to the fiber Fx is an isomorphism of Fx onto {x} × Cn.

Let U ⊂ X be a subset. A map s : U → L is called a section of L over U
if the composition p◦s = IdU . In other words, for any point x ∈ U the value
s(x) belongs to the fiber Fx. The set of all sections of L over U is denoted
by Γ(L, U). It is a natural generalization of the space of vector-functions
Fun(U, Cn). (Note, that for trivial bundles these notions coincide.)

3.2. G-bundles over G-sets. A vector bundle L over a right G-set is called
a G-bundle, if G acts also on L (also from the right) and

1. This action commutes with the projection p : L→ X.
2. The restriction of G-action on every fiber is a linear map.

In the space Γ(L, X) the linear representation Π of the group G arises.
It acts by the shifts of argument:

(5)
(

Π(g)γ
)

(x) = γ(x · g).

When the bundle L is trivial and 1-dimensional, the above formula gives just
the geometric representation of G in the complex function space Fun(X, C).

The most interesting case is when the G-set X is homogeneous. The
notations are slightly shorter if we assume that X is a right G-set, hence
isomorphic to the right coset space H\G. Below we consider this situation
in more details.

To study the sections of L, we have to write these sections in a convenient
form. Denote by x0 ∈ X the initial point (the coset H\H in H\G) and by
W the fiber Fx0 . Choose a basis B = (e1, . . . , en) in W .

Using the action of the element g ∈ G, we can translate this basis to
the basis B · g = (e1 · g, . . . , en · g) in the fiber Fx·g = W · g. A section
γ ∈ Γ(L, X) is determined by the vector-function wγ = (w1

γ , . . . , w
n
γ ) on G,

given by

(6) wiγ(g) = (γ(x0 · g), ei · g).

But not every vector-function is associated to a section.

Proposition 5. Let (ρ, W ) be the representation of H = Stab(x0) on the
fiber W over x0. A vector-function w on G correspond to a section of the
bundle L over X iff it satisfies the relation

(7) w(hg) = ρ(h)w(g).

Proof. By definition of ρ, the bases B · h and B are connected by the
relation

(8) B · h = (e1 · h, . . . , en · h) = (ρ(h)e1, . . . , ρ(h)en) = ρ(h)B.
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Applying the action of g to this relation, we get B · hg = ρ(h)B · g, which
implies (7) and the necessity of the condition. The sufficiency follows from
the explicit formula γ(x0 · g) = wi(g)ei · g.

Proposition 6 (Corollary). There is natural bijection between the (equiva-
lence classes of) n-dimensional G-bundles over X = H\G and (equivalence
classes of) n-dimensional complex representations of H.

We denote Lρ the bundle, corresponding to ρ ∈ Rep(H).

Theorem 1. The representation Π of G in the space Γ(Lρ, X), defined by

(5), is equivalent to the induced representation IndGHρ.

Proof. We show that Π possesses the characteristic property of induced
representations, i.e. satisfies the Frobenius formula (1) with Π instead of
IndGHρ:

i(ResGHπ, ρ) = i(π, Π).

To prove it, we establish the explicit correspondence between the two spaces
of intertwining operators: I(ResGHπ, ρ) and I(π, Π).

Let V be the space of the representation π. By definition, an operator
A ∈ I(π, Π) sends a vector v ∈ V to some section of the vector bundle Lρ,
which we denote γv. The intertwining property is: γπ(g)v = Π(g)γv, or

γπ(g)v(x) = γv(xg) for all x ∈ X, g ∈ G.

The section γv determines the vector-function on G which we denote by
wv(g). The G-action on Lρ in terms of these vector-functions looks like
wπ(g)v = Π(g)w.

Finally, we associate to A the operator Ã : V → W , which sends v ∈ V
to the value wv(e) ∈W .

We have to check that Ã belongs to i(ResGHπ, ρ) and the correspondence

A→ Ã is a bijection. The intertwining property of Ã follows from

Ãπ(h)v = wπ(h)v(e) = wv(h) = ρ(h)wv(e) = π(h)Ãv.

Further, every operator B from i(ResGHπ, ρ) has the form Ã, where A
is the operator, which sends v ∈ V to the section γ(x0 · g) = π(g)Bv.
�

4. Involutions in Sn and the model representation

4.1. Involutions. In this section we call involution every permutation s ∈
Sn, satisfying s2 = e (including e itself). It is clear that the cycle type of such
permutation is 1k2l, k+2l = n. The conjugacy class C[s] is an homogeneous
Sn-set, isomorphic to the coset space Sn/Z(s), where Z(s) is the centralizer
of the element s ∈ Sn.

To describe the centralizer Z(s), consider first the extremal cases n = k
and n = 2l. In the first case s = e and Z(s) = Sn. In the second case
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we realize X2l as the set X ′2l = {±1,±2, . . . ,±l} and put s(i) = −i. The
centralizer Z(s) contains permutations of two types:

a) s(i) = sgn (i) · σ(|i|), where σ ∈ Sl, b) s(i) = ε(i) · i, ε(i) = ±1.

The permutations of type a) form a group, isomorphic to Sk, those of second
type form a group, isomorphic to Z/2Z)l. The whole centralizer is a semi-
direct product of these two groups: Cl ' Sl o (Z/2Z)l. (The group Cl is
isomorphic to the full symmetry group of an l-dimensional cube).

In general case, when n = k+2l, the centralizer Z(s) is the direct product

Sk o Cl. Its cardinality is |Sn|
|Sk|·|Cl| = (k+2l)!

k! (2l)!! .

5. The universal line bundle over Inv(Sn)

The whole set Inv(Sn) of involutions in Sn is the disjoint union of subsets
Invl(Sn), 0 ≤ l ≤ n

2 , which are just conjugacy classes C1k2l , k+ 2l = n. We
define an Sn-line bundle L over Inv(Sn) as follows.

As we showed above, a complex G-bundle L over an homogeneous right
G-set X = H\G is determined by the action of the subgroup H in the fiber
Fx0 ' C over the initial point x0 ∈ X.

In our case this action is given by the family χ of characters {χl}, 0 ≤ l ≤
n/2. The space Γ(Invl(Sn), Lχl) of sections of L over Invl(Sn) is identified
with the space of complex-valued functions ϕ on Sn, satisfying

(9) ϕ(gh) = χl(h)ϕ(g), h ∈ Sk o Cl,

which is a particular case of (7), where representation ρ is one dimensional.

Theorem 2 (A.A.Klyachko). Define the character χl of Sk o Cl as trivial
on Sk and as sgn on Cl. Then the space

Γ(Lχ, Inv(Sn)) = ⊕[n/2]
l=0 Γ(Lχl, Invl(Sn))

will be a model for Sn.

�

Example 1. For n = 3 we have Inv0 = {e}, Inv1 = {(1, 2), (2, 3), (1, 3)}.
The line bundle Lχ over Inv0 is trivial and in the space Γ(Inv0, χ0 the

trivial representation π0 is realized (as a geometric representation) .
The line bundle Lχ over Inv1 corresponds to the character sgn and is the

tensor product of geometric representation in Fun(Inv1) and 1-dimensional
representation π1 = sgn. So, in the space Γ(Inv0, χ0 the reducible repre-
sentation π1 ⊕ π2 is realized.

Example 2. n = 4 we have Inv0 = {e}, Inv1 = {(1, 2), (1, 3), (1, 4), (2, 3),
(2, 4), (3, 4)}, Inv2 = (12)(34), (13)(24), (14)(23).

Here again, in sections of Lχ over Inv0 the trivial representation π0 acts.
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The 3-dimensional representation in the space of sections of Lχ over Inv2
is again the tensor product of geometric representation in Fun(Inv2) and
1-dimensional representation π1 = sgn. So, splits as π1 ⊕ π2.

Finally, the 6-dimensional representation in the space of sections of Lχ
over Inv1 is the sum of two 3-dimensional unirreps of S4.

It would be interesting to describe explicitly the distribution of unitrreps
of Sn between the [n/2] spaces Γ(Lχ, Invl(Sn)).

E-mail address: kirillov@math.upenn.edu
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