4. Преобразование Мёбиуса

- $\, \triangleright \,$ Под значком $\sum_{d|n}$ подразумевается сумма по всем натуральным делителям числа n.
- \triangleright Определим функцию Мёбиуса $\mu(n)$ следующим образом:

$$\mu(n) = \begin{cases} 1, & \text{если } n = 1; \\ (-1)^k, & \text{если } n \text{ является произведением } k \text{ различных простых делителей;} \\ 0, & \text{если } n \text{ делится на } p^2 \text{ для некоторого простого числа } p. \end{cases}$$

Задача 4.1. а) Докажите, что
$$\sum\limits_{d|n}\mu(d)=egin{cases}1,n=1;\\0,n
eq 1.\end{cases}$$

- б) Найдите сумму значений функции Мёбиуса по тем и только тем делителям числа n, в каноническое разложение которых входит чётное количество простых множителей.
- в) (Формула обращения Мёбиуса.) Пусть $f: \mathbb{N} \to \mathbb{R}$ произвольная функция, $g(n) = \sum_{d|n} f(d)$. Тогда выполнена формула

$$f(n) = \sum_{d|n} \mu(d)g\left(\frac{n}{d}\right) = \sum_{d|n} \mu\left(\frac{n}{d}\right)g(d).$$

 \triangleright Функция Эйлера $\varphi(n)$ равна, по определению, количеству натуральных чисел, не превосходящих n и взаимно простых с ним.

Задача 4.2. а) Найдите сумму $\sum_{d|n} \varphi(d)$.

- б) Докажите, что $\sum_{\substack{d|n\\d}} \frac{\mu(d)}{d} = \left(1 \frac{1}{p_1}\right) \dots \left(1 \frac{1}{p_s}\right)$, где $n = p_1^{\alpha_1} \dots p_s^{\alpha_s}$ каноническое разложение числа n.
- \triangleright Обозначим через $T_r(n)$ количество способов раскрасить карусель из n вагончиков в r цветов, т. е. число раскрасок вершин правильного n-угольника в r цветов, если раскраски, совмещающиеся поворотом, неотличимы. При этом
 - в раскраске могут быть использованы не все цвета;
 - цвета различны: например, раскраски КККЖ и ЖЖЖК различны.

Приведем более формальное определение. Для любой раскраски карусели можно «разорвать» карусель между любыми двумя вагончиками и записать получившуюся последовательность цветов (раскраску поезда), начиная с места разрыва по часовой стрелке. Например, следующие последовательности соответствуют одной и той же раскраске карусели:

КЖЗС; ЖЗСК; ЗСКЖ; СКЖЗ.

С другой стороны, из каждой последовательности цветов можно получить раскраску карусели, «склеив» её начало и конец правильным образом.

 (a_2, a_3, \ldots, a_1) . Формально, раскраской карусели (или, более учено, циклической последовательностью) называется класс эквивалентности последовательностей с точностью до циклического сдвига. Итак, $T_r(n)$ — количество циклических последовательностей длины n, элементы которых — числа $1, \ldots, r$.

Задача 4.3. а) Найдите $T_r(n)$ при n=3,4,5,6,9. б) Докажите, что $2^{2^n-n-1} < T_2(2^n) < 2^{2^n-n}$.

Задача 4.4. а) Докажите, что период последовательности делит её длину.

б) Если d делит n, то количество последовательностей длины n и периода d равно количеству последовательностей длины d и периода d. Докажите это.

- Задача 4.5. а) Найдите $\sum_{d|n} M_r(d)$. 6) Выразите $T_r(n)$ через все $M_r(d)$, где $d\mid n$. в) Докажите, что $T_r(n) = \sum_{l|n} \frac{1}{l} \sum_{d|l} \mu(d) r^{\frac{l}{d}}$. г) Докажите, что $T_r(n) = \frac{1}{n} \sum_{d|n} \varphi(d) r^{\frac{n}{d}}$.

Задача 4.6. Найдите количество различных раскрасок карусели из n вагончиков в r цветов, в которых

- а) цвет s встречается n_s раз для каждого $s=1,\ldots,r$ (в качестве ответа принимается формула с суммированием по делителям, аналогичная формуле из пункта в) задачи 4.5);
- б) присутствует ровно 4 цвета из r = 5 данных.