Задачи к 17.05.

- (1) Пусть X гиперповерхность в \mathbb{P}^n , $a \in X$ и в \mathbb{P}^n лежит некоторое линейное подпространство \mathbb{P}^m (m < n), проходящее через точку a. Тогда $X \cap \mathbb{P}^m$ является гиперповерхностью в \mathbb{P}^m , и мы можем рассмотреть поляры P_aX в \mathbb{P}^n и $P_a(X \cap \mathbb{P}^m)$ в \mathbb{P}^m . Объясните, почему $P_a(X \cap \mathbb{P}^m) = P_aX \cap \mathbb{P}^m$.
- (2) Пусть X неособая кривая степени d в \mathbb{P}^2 . Докажите, что множество касательных к X является кривой на двойственной плоскости \mathbb{P}^2 . Она называется двойственной кривой и обозначается \check{X} . Какова ее степень? Что меняется в случае гиперповерности в \mathbb{P}^n ? Если X имеет особенности, то \check{X} определяется как замыкание множества касательных к неособым точкам.
- (3) Пусть X гиперповерхность в \mathbb{P}^n степени d, заданная уравнением $F(x_0:\ldots:x_n)=0$. Рассмотрим пространство W_F форм степени d-1, состоящее из форм вида $\sum a_i \frac{\partial F}{\partial x_i}$, т.е. пространство уравнений всех поляр. Объясните, почему отображение линейным рядом W_F (оно называется отображением линейным рядом поляр) естественно рассматривать как отображение из \mathbb{P}^n в $\check{\mathbb{P}}^n$. Его называют отображением линейным В каких точках это отображение не определено? Покажите, что образом X при этом отображении является \check{X} .
- (4) Покажите, что отображение линейным рядом поляр является биекцией (вне X) в следующих двух случаях:
 - а) X декартов лист. Найдите \check{X} .
 - б) X кубическая гиперповерхность, заметаемая хордами поверхности Веронезе в \mathbb{P}^5 . Найдите \check{X} .
- (5) Докажите, что $\check{X} = X$. Заметьте, что это не проективное, а локальное утверждение, его можно проверять в окрестности степени d одной точки!
- (6) Докажите, что если точка a кривой X степени d является точкой перегиба, то полярная коника $P_{a^{d-2}}X$ особа.
- (7) Докажите, что пересечение кривой X с ее гессианом $\operatorname{He} X$ есть в точности объединение множества особенностей X и множества ее точек перегиба. Гессиан $\operatorname{He} X$ задается уравнением $\det \left(\frac{\partial^2 F}{\partial x_i \partial x_j} \right) = 0$.
- (8) Докажите, что прямая, соединяющая две точки перегиба кубической кривой, пересекает ее в третьей точке перегиба.