12. Деревья

▶ Граф называется деревом, если он связен и не содержит несамопересекающихся циклов. Остовом графа называется любой его подграф, являющийся деревом и содержащий все вершины графа

Задача 12.1. а) В любом дереве с более, чем одной вершиной, найдется лист, т.е. вершина степени 1.

- б) Связный граф с n вершинами является деревом тогда и только тогда, когда в нем n-1 ребро.
- в) Граф является деревом тогда и только тогда, когда между любыми двумя его вершинами существует единственный несамопересекающийся путь.
- г) Последовательность из n натуральных чисел является последовательностью степеней вершин некоторого дерева тогда и только тогда, когда сумма ее членов равна 2n-2.
- ⊳ Далее будем рассматривать графы с занумерованными вершинами (т.е. графы, а не их классы изоморфизма).

Задача 12.2. Каких графов с данными *п* вершинами больше:

- а) имеющих изолированную вершину или не имеющих?
- б) связных или несвязных?

Задача 12.3 (**Формула Кэли**). а) Число деревьев с данными n вершинами равно n^{n-2} .

б) Пусть $d_1 + \dots + d_n = 2n-2$. Докажите, что число деревьев с n вершинами, у которых степень i-й вершины равна d_i , равно $\frac{(n-2)!}{(d_1-1)!\dots(d_n-1)!}$.

Это утверждение можно переформулировать так:

$$(x_1 + \dots + x_n)^{n-2} = \sum_T x_1^{\deg_T(1)-1} \cdot \dots \cdot x_n^{\deg_T(n)-1},$$

где сумма берется по всем деревьям T с n вершинами, а через $\deg_T(i)$ обозначена степень i-й вершины в дереве T.

Задача 12.4. а) Докажите, что дереве нет непустых подграфов, у которых степень каждой вершины четная и положительная.

- б) Для графа G обозначим через $h_1(G)$ число его подграфов без изолированных вершин, у которых степень каждой вершины четна. (Пустой подграф удовлетворяет этому условию). Докажите, что $h_1(G)$ степень двойки. Выразите $h_1(G)$ через количество вершин v, ребер e и компонент связности k графа.
- в) На ребрах дерева стоят знаки + и -. Разрешается менять знаки на всех ребрах, выходящих из одной вершины. Тогда из любой расстановки можно получить любую другую.
- г) Докажите, что в предыдущем пункте достаточно уметь менять знаки только в вершинах, в которые входят лишь ребра с одним знаком.
- д) Назовем две расстановки знаков + и на ребрах графа эквивалентными, если одна получается из другой преобразованиями из пункта **в**). Обозначим через $h^1(G)$ число классов эквивалентности расстановок знаков. Докажите, что оно является степенью двойки, и выразите его через v, e и k.
- e^*) Докажите, что $h_1(G)$ и $h^1(G)$ не меняются при стягивании ребра, и выведите отсюда, что $h_1(G) = h^1(G)$.