Massive MIMO

Introduction

Danila Zaev Huawei

Single antenna transmission

Massive MIMO transmission – key 5G technology

Source of

- Non-convex optimization problems
- Combinatorial optimization problems
- Stochastic optimization problems
- Dynamic control problems

Single antenna transmission

Multi antenna transmission

n – number of transmitting antennas

 w_k^1 – "weight" of the symbol at antenna

Symbol x_1 is multiplied by w_k^1 and then transmitted from k-th antenna

 $w^{1} = \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \text{-- precoding vector}$ $w^{1} \in \mathbb{C}^{n},$ $||w^{1}||_{L^{2}}^{2} = p,$

$$y_{1} = (h_{11} \dots h_{1n}) \cdot \begin{pmatrix} w_{1}^{1} \\ \vdots \\ w_{n}^{1} \end{pmatrix} \cdot x_{1} + noise$$

$$SINR_1 = \frac{\left|\left\langle h_1, w^{1^*} \right\rangle\right|^2}{\delta^2}$$

Which **precoding vector** w^1 maximizes *SINR* for user with channel h_1 ? Answer: $w_{opt}^1 = c \cdot h_1^*$

Multi-user transmission

Transmit two symbols to two different users simultaneously

 $SINR_{1}(W) = \frac{\left|\left\langle h_{1}, w^{1^{*}} \right\rangle\right|^{2}}{\left|\left\langle h_{1}, w^{2^{*}} \right\rangle\right|^{2} + \delta_{1}^{2}}$

$$SINR_{2}(W) = \frac{\left|\left\langle h_{2}, w^{1^{*}} \right\rangle\right|^{2}}{\left|\left\langle h_{2}, w^{2^{*}} \right\rangle\right|^{2} + \delta_{2}^{2}}$$

Maximizing weighted sum of spectral efficiency:

$$\sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k) \to \max_W$$

Multi-user beamforming

$$\sum_{u \in U} \alpha_u \cdot \log(1 + SINR_u(W)) \to \max_W$$

$$SINR_{k}(W) = \frac{\left|\left\langle h_{k}, W^{k^{*}}\right\rangle\right|^{2}}{\left|\left\langle h_{k}, W^{l^{*}}\right\rangle\right|^{2} + \delta_{1}^{2}}$$

ZF beam orthogonal to all other users channel vectors:

$$w_{ZF}^k \in < h_1, \ldots, h_{k-1}, h_{k+1}, \ldots, h_n >^{\perp}$$

 w_{ZF}^{k} maximizes $\left|\left\langle h_{k}, w_{ZF}^{k}\right\rangle \right|^{2}$ in this subspace

 W_{ZF} is a pseudo-inverse matrix to *H*: $W_{LF} = H^* \cdot (HH^*)^{-1}$

$$W_{\rm ZF} = H^* \cdot (HH^*)^-$$

Multi-user pairing

Not necessary to transmit to all active users A

Submodular set-function

"The larger the set the smaller the gain"

 $F: 2^A \rightarrow \mathbf{R}$ is called **submodular** iff for any $U \subseteq V \subseteq A$, $c \in A \setminus B$ implies $F(U \cup c) - F(U) \ge F(V \cup c) - F(V)$ This property is an analogue for **concavity** If a function both submodular and Supermodular it is called **modular**: $F(U \cup c) - F(U) = F(V \cup c) - F(V)$ This is the analog of linearity

Supermodular set-function

"The larger the set the larger the gain"

 $F: 2^A \rightarrow \mathbf{R}$ is called **supermodular** iff for any $U \subseteq V \subseteq A$, $c \in S \setminus V$ implies $F(U \cup c) - F(U) \leq F(B \cup c) - F(V)$ This property is an analogue for **convexity** Set-function is **DS** iff it can be represented as a **difference of two monotone submodular function**

Monotone set-function $F: 2^A \rightarrow \mathbf{R}$ is called **monotone** iff for any $U \subseteq V \subseteq A$, $F(U) \leq F(V)$

$$F(U) = \sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k)$$

Set-function property	Real function analogue property	F(U)
Monotone	Monotonicity	no
Modular	Linear	no
Submodular	Concave	no
Supermodular	Convex	no
Difference of two submodular functions	Difference of two concave functions	yes

User pairing from combinatorial point of view

Consider the size of ground set |A|=30. Assume F belongs to one of the following classes:

I. Sub-modular but not monotone function,

II. DS function.

Propose an optimization method (with guaranteed accuracy of optimum approximation) that has complexity not greater than:

a) 150% of the one-pass approach complexity,

b) 300% of the one-pass approach complexity,

c) 1000% of the one-pass approach complexity.

Multi-user beamforming

How to choose precoding matrix W maximizing

$$\sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k) \to \max_W$$

Single-user beamforming

How to do beamforming if user equipment has several antennas?

How to optimize beamforming for a specific algorithm at receiver end?

User scheduling

How to design coefficients α_k

$$F(U) = \sum_{k \in U} \alpha_k \cdot \log(1 + SINR_k)$$

targeting particular network KPIs?

Thanks