Лекции 15,16 - 19. Гамма-функция Эйлера

Здесь описываются свойства одной из самых важных неэлементарных функций анализа. Обычно ее название пишется так: Г-функция.

1 Определение Г-функции.

Г-функция определяется как мероморфная функция в комплексной области. Явная формула задает ее в открытой правой полуплоскости. Дальше используется аналитическое продолжение.

Определение 1 $\Pi pu \ Re \ z > 0$,

$$\Gamma(z) = \int_{\mathbb{R}^+} t^{z-1} e^{-t} dt \tag{1}$$

Замечание 1 При любом фиксированном t>0 подинтегральная функция

$$f(t,z) = t^{z-1}e^{-t} (2)$$

голоморфна по z.

Теорема 1 При $Re\ z > 1$ интеграл (1) задает голоморфную функцию.

Доказательство По определению,

$$t^z = e^{z \ln t} = e^{(x+iy) \ln t}.$$

При $t>0, |t^z|=t^x, \arg t^z=iy \ln t$. Частные производные этой функцим по x и по y мажорируются при t>0 функцией $|\ln t|t^x$.

Задача 1 Докажите, что а) при любом $z:\Re z>0$ существует C>0 такое что:

$$|D_x t^{z-1} e^{-t}| < C e^{-\frac{t}{2}}.$$

Утверждение остается верным, если заменить D_x на D_y .

b) Для любогог компакта (диска) в правой полуплоскости можно выбрать C так, что предыдущее неравенствог выполнено для любого $z \in D$.

Интеграл $\int_0^\infty e^{-\frac{t}{2}}$ сходится. Из теоремы о дифференцировании под знаком интеграла следует, что частные произвождные $D_x\Gamma$ и $D_y\Gamma$ получаются дифференцированием под знаком интеграла. Вещественные и мнимые части производной подинтегральной функции по x и по y удовлетворяют условиям Коши-Римана, потому что эта функция голоморфна по z. Следовательно, Γ -функция тоже удовлетворяет условиям Коши-Римана, и голоморфна по z при $\mathrm{Re}\ z>1$.

Теорема 2 Теорема 1 остается справедливой, если в ней заменить $Re\ z>1$ на $Re\ z>0$.

Доказательство Определение 1 полезно написать как интеграл по всей оси, сделав замену $\tau = \ln t$. Тогда

$$\Gamma(z) = \int_{\mathbb{R}} e^{z\tau} e^{-e^{\tau}} d\tau \tag{3}$$

При Re z>0, функция $e^{z\tau}$ как функция от вещественного τ экспоненциально стремится к нулю при $\tau\to-\infty$. Функция

$$g(\tau, z) = e^{z\tau} e^{-e^{\tau}}$$

для любого $z: \mathrm{Re}\ z>0$ мажорируется функцией $e^{-\varepsilon|\tau|}$ при $0<\varepsilon<\mathrm{Re}\ z.$ Более того, для любого диска $D\subset (\mathrm{Re}\ z>0)$ существуют C,ε такие, что

$$|g(\tau,z)| < Ce^{-\varepsilon|\tau|}$$
 в $R \times D$.

Задача 2 Докажите эти утверждения.

Из них следует, что теорема о дифференцировании под знаком интеграла применима, и Γ -функция голоморфна в области Re z > 0.

2 Формула сдвига и аналитическое продолжение

 Γ -функция является голоморфным продолжением последовательности факториалов: для любого натурального n

$$\Gamma(n) = (n-1)! \tag{4}$$

Это вытекает из следующей формулы сдвига: при $\,{\rm Re}\ z>0\,$

$$\Gamma(z+1) = z\Gamma(z). \tag{5}$$

Формула сдвига доказывается с помощью интегрирования по частям. При ${
m Re}\ z>0.$

$$\Gamma(z) = \int_{\mathbb{R}^+} t^{z-1} e^{-t} dt = \frac{1}{z} \int_{\mathbb{R}^+} e^{-t} dt^z = \frac{1}{z} t^z e^{-t} |_0^{+\infty} + \frac{1}{z} \int_{\mathbb{R}^+} t^z e^{-t} dt = \frac{1}{z} \Gamma(z+1).$$

Равенство $t^z|_{t=0}=0$ использует то, что Re z>0. Отсюда следует формула (5). Заметим, что $\Gamma(1)=1$. . Это немедленно следует из определения. Формула (4) следует теперь из формулы сдвига.

Индукцией по n определим Γ -функцию в полосе

$$\Pi_n = \{ \text{Re } z \in [n - \varepsilon, n + 1 + \varepsilon] \},$$

предполагая, что в полосе Π_{n+1} Γ -функция уже определена и удовлетворяет (5). А именно, положим:

$$\Gamma(z) = \frac{\Gamma(z+1)}{z}.$$
 (6)

Отметим, что в узкой полосе $L_{n+1} = \{|\text{Re } z - (n+1)| < \varepsilon\}$ функция Γ задана двумя способами: как ограничение Γ -функции из полосы Π_{n+1} и формулой (6). Но из формулы (6) для Γ -функции в полосе Π_{n+1} следует, что эти два определения Γ -функции совпадают. Это и значит, что Γ -функция в полосе Π_n является аналитическим продолжением Γ -функции, заданной в полосе Π_{n+1} .

3 Полюса и вычеты Г-функции

Выразим Г-функцию в любой точке z, Re $z \le 0$, через значения Г-функции в правой полуплоскости. Фиксируем z. Пусть n таково, что $\mathrm{Re}(z+n)>0$. Тогда в окрестности точки z+n, Г-функция голоморфна. По формуле (5)

$$\Gamma(z+n) = (z+n-1)\Gamma(z+n-1) = (z+n-1)(z+n-2)\dots(z+1)z\Gamma(z) := P_n(z)\Gamma(z).$$

Итак:

$$\Gamma(z) = \frac{\Gamma(z+n)}{P_n(z)}.$$

Пусть $P_n(z) \neq 0$. Тогда при всех w, близких к z, формула

$$\Gamma(w) = \frac{\Gamma(w+n)}{P_n(w)} \tag{7}$$

задает голоморфную функцию. Многочлен $P_n(z)$ имеет корень z только если

$$z \in \{0, -1, \dots, 1 - n\}.$$

Итак, функция Γ голоморфна вне целых отрицательных точек.

Пусть теперь $z=-n,\ n+1\in\mathbb{N}.$ Начнем со случая n=0,z=0. Тогда при малых w,

$$\Gamma(w) = \frac{\Gamma(w+1)}{w}.$$

Напомним, что $\Gamma(1) = 1$, а

$$\operatorname{Res}_{a} \frac{f(z)}{z-a} = f(a), \tag{8}$$

если функция f голоморфна в a. Следовательно,

Res
$$_{0}\Gamma = 1$$
.

Отметим, что

$$P_n(-n+w) = (-n+w)\dots(w+1).$$

Следовательно, при малых w

$$\Gamma(-n+w) = \frac{\Gamma(w)}{(-n+w)\dots(-1+w)} = \frac{\Gamma(w+1)}{(-n+w)\dots(-1+w)w}.$$

Все множители в знаменателе последней дроби, кроме w, равно как и числитель, отличны от нуля в малой окрестности нуля. Поэтому Γ -функция имеет в точке -n простой полюс с вычетом

 $\operatorname{Res}_{-n}\Gamma = \frac{(-1)^n}{n!}.$

4 Убывание Г-функции в направлении мнимой оси

Теорема 3 Γ -функция убывает в направлении мнимой оси быстрее любой степени. Это убывание равномерно в любой полосе $Re\ z \in [a,b]$.

Доказательство Краткое доказательство: ограничение Г-функции на прямую, параллельную мнимой оси – это преобразование Фурье быстро убывающей функции.

Подробное доказательство. Рассмотрим сначала случай 0 < a < b. Фиксируем x и пусть $z = x - \alpha i$. Воспользуемся формулой (3).

$$\Gamma(x - i\alpha) = \int_{\mathbb{R}} (e^{-x\tau} e^{-e^{\tau}}) e^{-i\alpha\tau} d\tau.$$

При любом x > 0, функция

$$h_x: \tau \mapsto e^{-x\tau}e^{-e^{\tau}}$$

- быстро убывающая. Функция $\Gamma(x-i\alpha)$ - ее преобразование Фурье. Следовательно, функция $\Gamma(x-i\alpha)$ - тоже быстро убывающая. Легко доказать равномерность этого убывания по $x\in[a,b]$. Быстрое убывание в полосе $\mathrm{Re}\ z\in[a,b]$ при a<0 выводится из предыдущего и формулы сдвига.

5 Формула отражения

Г-функция удовлетворяет многим замечательным соотношениям. Вот одно из них.

Теорема 4 Справедлива следующая формула отражения:

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$
 (9)

Доказательство Эта теорема выводится из доказанных выше свойств Г-функции и простейших теорем комплексного анализа. А именно, рассмотрим разность

$$R(z) = \Gamma(z)\Gamma(1-z) - \frac{\pi}{\sin \pi z}$$
(10)

и докажем, что $R(z)\equiv 0$. Для этого убедимся, что уменьшаемое и вычитаемое имеют одни и те же простые полюса, а в них – одни и те же вычеты. Отсюда следует, что функция R(z) голоморфна. Мы докажем, что она ограничена. Тогда по теореме Лиувилля она константа. Но $\lim_{\alpha\to\infty}R(x+i\alpha)=0$, как будет доказано ниже. Следовательно, $R\equiv 0$.

Перейдем к подробному изложению.

Шаг 1. Голоморфность функции R. Функция $\frac{\pi}{\sin \pi z}$ имеет полюса в целых точках и только в них. Вычеты в этих точках имеют вид:

$$\operatorname{Res}_n\left(\frac{\pi}{\sin \pi z}\right) = \frac{\pi}{\cos \pi n} = (-1)^{n-1}.$$

Функция Γ имеет простые полюса в точках $n \in \mathbb{Z} \setminus \mathbb{N}$ и только в них. Функция $\Gamma(1-z)$ голоморфна в этих точках. Функция $\Gamma(1-z)$ имеет простые полюса в точках $n \in \mathbb{N}$ и только в них. Функция Γ голоморфна в этих точках. Следовательно, при $n \in \mathbb{N} \cup \{0\}$,

$$\operatorname{Res}_{-n}\Gamma(z)\Gamma(1-z) = (\operatorname{Res}_{-n}\Gamma)\Gamma(1+n) = \frac{(-1)^n}{n!}n! = (-1)^n.$$

Аналогично, при $n \in \mathbb{N}$,

$$\operatorname{Res}_n\Gamma(z)\Gamma(1-z) = \operatorname{Res}_n\Gamma(1-z)\Gamma(n) = (-1)^n.$$

Следовательно, вычеты функций в правой и левой частях формулы (9) одинаковы, и функция R голоморфна на всей плоскости.

Шаг 2. Периодичность R. Функция R периодична с периодом 2. Действительно, этим свойством обладает функция $\frac{\pi}{\sin \pi z}$. Кроме того,

$$\Gamma(z+1) = z\Gamma(z)$$

$$\Gamma(1 - (z+1)) = \Gamma(-z) = \frac{\Gamma(-z+1)}{-z}.$$

Следовательно, R(z+1) = -R(z). Поэтому R(z+2) = R(z).

Шаг 3. Функция R убывает вдоль мнимой оси в полосе $\text{Re}z \leq 1$.

Точнее, в области $|\text{Re}z| \leq 1$ имеем: $\lim_{z\to\infty} R(z) = 0$.

Это немедленно следует из теоремы 3.

Шаг 4.

Предложение 1 Голоморфная T-периодическая функция R на плоскости \mathbb{C} превращается в голоморфную функцию на $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ с помощью стандартной формулы:

$$\rho(\zeta) = R\left(T\frac{\ln\zeta}{2\pi i}\right). \tag{11}$$

Доказательство Когда точка ζ обходит вокруг нуля, к логарифму прибавляется $2\pi i$, и аргумент функции R в формуле (11) меняется на T. Но сама функция при этом не меняется, потому что T – ее период! Следовательно, функция ρ голоморфна в \mathbb{C}^* .

Когда $\zeta \to 0$ в любом секторе с раствором меньше 2π и с вершиной $0,\ z=2\frac{\ln\zeta}{2\pi i}\to\infty$ в полосе $|{\rm Re}\ z|<1,$ причем ${\rm Im}\ z\to+\infty.$ При этом рассматриваемая нами функцмя $R,\ (10),$ стремится к нулю. По теореме об устранимой особенности, функция ρ голоморфно продолжается в 0.

Аналогично, функция ρ голоморфно продолжается в ∞ . Но голоморфная функция на сфере Римана постоянна. Следовательно, $\rho \equiv \text{const.}$ Предел функции ρ в нуле равен нулю. Следовательно, $\rho \equiv 0$, а значит и $R \equiv 0$.

Формула обращения позволяет вычислить $\Gamma(\frac{1}{2})$. Действительно, подставляя в формулу отражения $z=\frac{1}{2}$, получаем: $\Gamma^2(\frac{1}{2})=\pi$.

Следствие 1 $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

6 Аксиоматическое описание Г-функции

Отметим, что мы воспользовались определением Γ -функции ровно три раза: при выводе формулы сдвига, при мероморфном продолжении Γ -функции на плоскость и при доказательстве того, что Γ -функция убывает в любой вертикальной полосе. Оказывается, что эти три свойства, вмести с $\Gamma(z)=1$, задают Γ -функцию однозначно.

Теорема 5 Всякая функция G, голоморфная в правой полуплоскости \mathbb{C}^+ : $Re\ z>0$, удовлетворяющая формуле сдвига:

$$G(z+1) = zG(z),$$

и убывающая на бесконечности в любой вертикальной полосе, совпадает с Γ -функцией, при условии G(1)=1:

$$G(z) \equiv \Gamma(z).$$

Доказательство

Шаг 1. Г-функция нигде не обращается в 0. Это свойство достаточно проверить для $z \notin \mathbb{Z}$, поскольку в целых точках значения Г-функции известны. При $z \notin \mathbb{Z}$,

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}.$$

Правая часть конечна и отлична от нуля, и оба множителя в левой части конечны. Следовательно, ни один из них не равен нулю.

Шаг 2. Рассмотрим функцию

$$H(z) = \frac{G(z)}{\Gamma(z)}.$$

Она голоморфна в правой полуплоскости. В силу формулы сдвига, она 1-периодична:

$$H(z+1) = \frac{G(z+1)}{\Gamma(z+1)} = \frac{zG(z)}{z\Gamma(z)} = H(z).$$

Следовательно, функция

$$h(\zeta) = H\left(\frac{\ln \zeta}{2\pi i}\right)$$

голоморфна в \mathbb{C}^* . Докажем, что эта функция ограничена. Из формулы отражения и стремления Γ -функции к нулю в вертикальных полосах, получаем:

$$|\Gamma(x+i\alpha)| > \frac{C}{|\sin \pi(x+i\alpha)|} > C'e^{-\pi|\alpha|}.$$

Более подробно,

$$|\Gamma(x+i\alpha)||\Gamma(1-(x+i\alpha))| = \frac{\pi}{|\sin \pi(x+i\alpha)|}$$

Второй сомножитель в левой части ограничен сверху некоторой константой C_1 . Поэтому

$$|\Gamma(x+i\alpha)| > \frac{\pi}{C_1|\sin\pi(x+i\alpha)|}$$

Следовательно,

$$|H(x+iy)| = \left| \frac{G(x+iy)}{\Gamma(x+iy)} \right| < ce^{\pi|y|}.$$

Докажем, что из этой оценки и 1-периодичности следует, что H - константа. Простейшая 1-периодическая голоморфная функция - это $e^{2\pi iz}$. При $y=\operatorname{Im} z\to -\infty$ эта функция растет как $e^{2\pi y}$. Оказывается, что неограниченная при $y\to -\infty$ 1-периодическая голоморфная функция не может расти медленнее. Родственный факт: неограниченная функция, голоморфная в проколотом круге, не может расти при приближении к нулю медленнее, чем r^{-1} . Перейдем к деталям.

При $\zeta = re^{i\varphi}, \ z = \frac{\ln \zeta}{2\pi i}$ имеем:

$$|\operatorname{Im}\, z| = \frac{|\ln r|}{2\pi}.$$

Следовательно,

$$|h(\zeta)| < ce^{\frac{|\ln r|}{2}} = \frac{c}{\sqrt{r}}.$$

Значит функция h растет при приближении к нулю медленнее, чем r^{-1} . По теореме об устранимой особенности, она голоморфно продолжается в 0. Аналогично, h голоморфно продолжается в бесконечность. Следовательно, она константа как голоморфная функция на всей сфере Римана. Но h(1) = 1. Итак, $h \equiv 1$.