Глава 1

Введение

1.1 Вводные замечания

Мы будем заниматься *(обыкновенными) дифференциальными уравнениями (системами уравнений)* — равенствами вида

$$F(y^{(n)}, \dots, y'', y', y, x) = 0,$$
 (1.1.1)

где y-k-мерная вектор-функция, а F — непрерывная по совокупности аргументов (далее мы наложим более сильные условия) функция со значениями в \mathbb{R}^k . Порядок старшей производной, входящей в уравнение, называется его nopядком. Решение системы — это такая функция $y\colon I\to\mathbb{R}^k$ (I — интервал на прямой, быть может, неограниченный), которая дифференцируема нужное число раз и при подстановке в уравнение даёт тождество.

В большинстве случаев мы будем считать, что система разрешена относительно старшей производной, то есть имеет вид

$$y^{(n)} = G(y^{(n-1)}, \dots, y', y, x).$$

 $(Если\ F$ была гладкой функцией, то по теореме о неявной функции часто имеется локальная разрешимость. На семинарах вы немного обсудите, что бывает там, где разрешить систему нельзя.)

Систему дифференциальных уравнений можно привести к эквивалентной системе первого порядка, сделав все производные, кроме старшей, новыми переменными.

Лемма 1.1.1. Рассмотрим систему

$$F(y'_{n-1}, y_{n-1}, y_{n-2}, \dots, y_1, y_0, x) = 0, \quad y'_{n-2} - y_{n-1} = 0, \dots, y'_1 - y_2 = 0, y'_0 - y_1 = 0.$$

Тогда, во-первых, всякое её решение имеет вид $(y_0, y_1 = y'_0, \dots, y_{n-1} = y_0^{(n-1)})$, а во-вторых, набор такого вида будет решением тогда и только тогда, когда y_0 будет решением (1.1.1)

Глава 2

Существование и единственность решений ОДУ

2.1 Локальная теория: существование, единственность и непрерывная зависимость от начальных условий

Бо́льшую часть курса мы будем заниматься изучением $задачи\ Komu\ для\ ОДУ$, то есть задачи вида

$$\dot{x}(t) = F(x, t),$$

 $x(t_0) = x_0.$ (2.1.1)

Обычно при рассмотрении задачи Коши удобно думать про независимую переменную как про время, а про x(t) — как про описание состояния какой-то системы в момент времени t. Вектор x_0 называют начальным условием.

Как вы видели на семинарах, решение задачи Коши может быть неединственно, а также не обязано быть определено на всей прямой, даже если само уравнение определено при всех значениях x и t.

Мы сначала займёмся локальной теорией (существованием и единственностью решения на малом отрезке времени). При этом оказывается, что единственность решения гарантируется гладкостью (и даже липшицевостью) правой части.

Часто бывает, что уравнение зависит от каких-то параметров:

$$\dot{x}(t) = F(x, t, \lambda),
x(t_0) = x_0(\lambda),$$
(2.1.2)

и тогда его решение можно рассматривать при разных λ , получая функцию $x(t,\lambda)$, которая при каждом фиксированном λ удовлетворяет этой системе и начальному условию:

$$\dot{x}(t,\lambda) = F(x(t,\lambda), t, \lambda),$$

$$x(t_0, \lambda) = x_0(\lambda).$$

Важный частный случай — зависимость от начального условия: $x_0(\lambda) = \lambda$, F не зависит от λ . Упраженение. Решите задачи Коши:

a)
$$\dot{x} = \lambda x$$
, $x(0) = 1$; 6) $\dot{x} = x$, $x(0) = x_0$.

Мы будем доказывать параллельно теорему существования и единственности и теорему о непрерывной зависимости от параметров. Перед этим мы проведём некоторую подготовительную работу.

2.1.1 Принцип сжимающих отображений с параметром

Хорошо известен принцип сжимающих отображений: если X — полное пространство, $\Phi \colon X \to X$ — его отображение в себя, для которого существует такое q < 1, что при всех $x, y \in X$ верно

$$\rho(\Phi(x), \Phi(y)) \le q\rho(x, y),$$

то существует и единственна неподвижная точка z этого отображения, т.е. решение уравнения $\Phi(z)=z.$

Предположим теперь, что Φ непрерывным образом зависит от параметра $\lambda \in \Lambda$ и по-прежнему сжимает с коэффициентом q при всех значениях параметра? Что можно сказать о зависимости неподвижной точки от параметра? Оказывается, эта зависимость непрерывна.

Теорема 2.1.1. Пусть $\Phi \colon X \times \Lambda \to X$ — непрерывное отображение, где X, Λ — метрические пространства, причём X полно. Пусть существует такое q < 1, что при всех $x, y \in X$ и всех $\lambda \in \Lambda$ верно

$$\rho(\Phi(x,\lambda),\Phi(y,\lambda)) \le q\rho(x,y).$$

Будем обозначать $\Phi_{\lambda}(x) = \Phi(x,\lambda)$. Тогда если $z(\lambda)$ — неподвижная точка отображения Φ_{λ} , то $z \colon \Lambda \to X$ непрерывна.

Доказательство. Напомним схему доказательства обычного принципа сжимающих отображений. Если $\Psi \colon X \to X$ сжимает с коэффициентом q, то возьмём любую точку y_0 и положим $y_n = \Psi^n(y_0)$. Тогда $\rho(y_n, y_{n+1}) \le q^n \rho(y_0, \Psi(y_0))$, откуда

$$\rho(y_n, y_m) \le \sum_{k=\min(n,m)}^{\infty} q^n \rho(y_0, \Psi(y_0)) = q^{\min(m,n)} \frac{\rho(y_0, \Psi(y_0))}{1 - q}.$$

Поэтому y_n фундаментальна, а значит, имеет предел y.

Заметим, что если в последней оценке мы перейдём к пределу при $n \to \infty$ и положим m=0, то получим

$$\rho(y_0, y) \le \frac{\rho(y_0, \Psi(y_0))}{1 - q}.$$
(2.1.3)

Неформально говоря, это неравенство означает, что если y_0 «почти неподвижна» (мало смещается под действием Ψ), то она достаточно близка к «настоящей» неподвижной точке y.

Применим это соображение к нашей ситуации. Пусть $\lambda_0 \in \Lambda$, $z_0 = z(\lambda_0)$. Тогда при $\lambda \in \Lambda$ будем строить $z(\lambda)$, итерируя точку z_0 . Из (2.1.3) получим, что

$$\rho(z(\lambda_0), z(\lambda)) = \rho(z_0, z(\lambda)) \le \frac{\rho(z_0, \Phi(z_0, \lambda))}{1 - q} = \frac{\rho(\Phi(z_0, \lambda_0), \Phi(z_0, \lambda))}{1 - q}.$$

В силу непрерывности Φ мы можем для любого ε выбрать такое $\delta = \delta(\varepsilon)$, что $\rho(\Phi(z_0, \lambda_0), \Phi(z_0, \lambda)) < \varepsilon(1-q)$ при $\rho(\lambda, \lambda_0) < \delta$, а тогда при $\rho(\lambda, \lambda_0) < \delta$ будет верно и $\rho(z(\lambda_0), z(\lambda)) < \varepsilon$.

2.1.2 Сведение к интегральному уравнению

Чтобы применять принцип сжимающих отображений для решения задачи Коши нам нужно сначала представить её в виде задачи поиска некоторой неподвижной точки. Это делается сведением к интегральному уравнению.

Лемма 2.1.2. Непрерывная функция $x: I \to \mathbb{R}^n$ является решением задачи Коши 2.1.2 при некотором значении λ тогда и только тогда, когда она удовлетворяет интегральному уравнению

$$x(t) = x_0(\lambda) + \int_{t_0}^t F(x(\tau), \tau, \lambda) d\tau.$$

Доказательство. Пусть x — решение задачи Коши. Тогда x непрерывна, а значит, непрерывна и функция $t\mapsto F(x(t),t,\lambda)$ (напомним, что с самого начала мы предполагаем, что функция F непрерывна). Значит, \dot{x} непрерывна, а тогда можно проинтегрировать от t_0 до t обе части уравнения $\dot{x}=F(x,t,\lambda)$ и получить интегральное уравнение.

Обратно, если x — решение интегрального уравнения, то подынтегральная функция в нём непрерывна. Дифференцируя обе его части по t получаем исходное дифференциальное уравнение, а подставляя в него $t=t_0$ — начальное условие.

Итак, можно определить отображение Φ_{λ} формулой

$$(\Phi_{\lambda}(x))(t) = x_0(\lambda) + \int_{t_0}^t F(x(\tau), \tau, \lambda) d\tau.$$
 (2.1.4)

Проблема состоит только в том, что пока не указано пространство, на котором оно действует. Это будет сделано ниже.

2.1.3 Теоремы о существовании и единственности и о непрерывной зависимости от параметра решений ОДУ

Теорема 2.1.3. Пусть функция $F: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^{n+1}$ открыто (координаты в этом \mathbb{R}^{n+1} мы будем обозначать (x_1, \dots, x_n, t)), удовлетворяет следующим условиям:

- \bullet F непрерывна,
- F липшицева по x: существует L > 0, такое что для любых $x, y \in \mathbb{R}^n$ и $t \in \mathbb{R}$, для которых $(x,t), (y,t) \in \Omega$, выполнено $|F(x,t) F(y,t)| \le L|x-y|$.

Пусть $t_0 \in \mathbb{R}$ и $x_0 \in \mathbb{R}^n$ таковы, что $(x_0, t_0) \in \Omega$. Тогда

• существует интервал $I \subset \mathbb{R}$, $t_0 \in I$ и функция $x \colon I \to \mathbb{R}^n$, являющаяся решением задачи Коши

$$\dot{x}(t) = F(x, t), \quad x(t_0) = x_0;$$

• если $\hat{x}: J \to \mathbb{R}^n$ — решение этой задачи Коши, то $x(t) = \hat{x}(t)$ при всех $t \in I \cap J$.

Теорема о непрерывной зависимости от параметра на неё очень похожа, нужно просто в требуемые места дописать λ , эти правки выделены красным цветом.

Теорема 2.1.4. Пусть функция $F: \Omega \to \mathbb{R}^n$, где $\Omega \subset \mathbb{R}^{n+1+m}$ открыто (координаты в этом \mathbb{R}^{n+1+m} мы будем обозначать $(x_1, \ldots, x_n, t, \lambda_1, \ldots, \lambda_m)$), удовлетворяет следующим условиям:

- F непрерывна,
- F липшицева по x: существует L > 0, такое что для любых $x, y \in \mathbb{R}^n$, $t \in \mathbb{R}$ $u \lambda \in \mathbb{R}^m$, для которых $(x, t, \lambda), (y, t, \lambda) \in \Omega$, выполнено $|F(x, t, \lambda) F(y, t, \lambda)| \le L|x y|$.

Пусть также дана непрерывная функция $x_0: \Lambda \to \mathbb{R}^n$, где $\Lambda \subset \mathbb{R}^m$ открыто. Пусть $t_0 \in \mathbb{R}$ и $\lambda_0 \in \Lambda$, таковы, что $(x_0(\lambda), t_0, \lambda) \in \Omega$. Тогда

• существует интервал $I \subset \mathbb{R}$, $t_0 \in I$, открытое множество $V \subset \Lambda$, $\lambda_0 \in \Lambda$, и функция $x \colon I \times V \to \mathbb{R}^n$, являющаяся решением задачи Коши

$$\dot{x}(t, \lambda) = F(x, t, \lambda), \quad x(t_0) = x_0(\lambda);$$

• если $\hat{x}: J \to \mathbb{R}^n$ — решение этой задачи Коши при некотором $\hat{\lambda} \in V$, то $x(t, \hat{\lambda}) = \hat{x}(t)$ при всех $t \in I \cap J$.

Разумеется, предыдущая теорема — прямое следствие этой: достаточно рассмотреть систему, где параметр λ фиктивен (от него не зависят значения F и x_0).

Доказательство. 1. Как уже говорилось, рассмотрим отображение Φ_{λ} , определённое формулой (2.1.4). В качестве пространства, где «живут» функции x, рассмотрим

$$E_{I,\varepsilon} = \{x \colon \overline{I} \to B_{\varepsilon}(x_0(\lambda_0)) \mid x \text{ непрерывна}\};$$

параметр $\varepsilon>0$ и интервал $I\ni t_0$ мы выберем ниже. По известной теореме из курса анализа пространство $C(\overline{I}\to\mathbb{R}^n)$ с нормой $\|x\|=\sup_{t\in\overline{I}}|x(t)|$ будет полно; тогда полно и $E_{I,\varepsilon}$ как его замкнутое подмножество.

2. Перейдём к доказательству того, что к $\Phi_{\lambda} \colon E_{I,\varepsilon} \to E_{I,\varepsilon}$ применима параметрическая версия принципа сжимающих отображений. По ходу дела мы сформулируем некоторые условия на ε и I, а также $V \ni \lambda_0$, их совместность мы проверим далее.

2а. Нам нужно, чтобы Φ_{λ} было корректно определено. Для этого выберем такие $\varepsilon_0>0,\,I_0\ni t_0,\,V_0\subset\lambda,\,$ что $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) imes\overline{I_0} imes\overline{V_0}\subset\Omega.$ Тогда при

$$\varepsilon \le \varepsilon_0, \quad I \subset I_0, \quad V \subset V_0$$

для любого $\lambda \in V$ и любой $x \in E_{I,\varepsilon}$ выражение $F(x(\tau), \tau, \lambda), \tau \in I$, будет корректно определено, то есть Φ_{λ} будет определено.

26. Проверим, что $\Phi \colon E_{I,\varepsilon} \times V \to C(\overline{I} \to \mathbb{R}^n)$ будет непрерывно. Действительно, F непрерывна на компакте $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V}_0$, а значит, равномерно непрерывна на нём. В частности, для любого γ существует $\delta_1(\gamma)$, что если $|\lambda - \hat{\lambda}| < \delta_1$ и $|y - \hat{y}| \le \delta_1$, то $|F(y,t,\lambda) - F(\hat{y},t,\hat{\lambda})| < \gamma$. Аналогично, (равномерная) непрерывность x_0 на \overline{V}_0 даёт, что для любого γ существует $\delta_2(\gamma)$, что если $|\lambda - \hat{\lambda}| < \delta_2$, то $|x_0(\lambda) - x_0(\hat{\lambda})| < \gamma$. Наконец, положим $\delta(\gamma) = \min(\delta_1(\gamma), \delta_2(\gamma))$.

Возьмём $x, \hat{x} \in E_{I,\varepsilon}, \|x - \hat{x}\| < \delta = \delta(\gamma)$ и $\lambda, \hat{\lambda} \in \overline{V}_0, |\lambda - \hat{\lambda}| < \delta$, тогда

$$|\Phi(x,\lambda)(t) - \Phi(\hat{x},\hat{\lambda})(t)| \le |x_0(\lambda) - x_0(\hat{\lambda})| + \int_{t_0}^t |F(x(\tau),\tau,\lambda) - F(\hat{x}(\tau),\tau,\lambda)| d\tau \le \gamma + |t - t_0| \cdot \gamma.$$

Итак, $\|\Phi(x,\lambda) - \Phi(\hat{x},\hat{\lambda})\|_{C(\overline{I} \to \mathbb{R}^n)} \le (1+\mu)\gamma$, где $\mu = \max_{t \in \overline{I}} |t-t_0|$ — максимальное отклонение точек I от t_0 . Значит, отображение Φ непрерывно.

2в. Далее, нам нужно, чтобы $\Phi(E_{I,\varepsilon} \times V) \subset E_{I,\varepsilon}$. Мы потребуем даже больше: $\Phi(E_{I,\varepsilon} \times V) \subset E_{I,5\varepsilon/6}$, причины для этого станут ясны ниже (см. п. 4). Оценим $\Phi(x,\lambda)$ следующим образом:

$$|\Phi(x,\lambda)(t) - x_0(\lambda_0)| \le |x_0(\lambda) - x_0(\lambda_0)| + \int_{t_0}^t |F(x(\tau),\tau,\lambda)| d\tau.$$

Первое слагаемое будет меньше $\varepsilon/2$, если $\lambda \in V_1(\varepsilon)$, где $V_1(\varepsilon) = V_0 \cap B_{\delta_2(\varepsilon/2)}(\lambda_0)$. Для оценки второго слагаемого положим

$$M = \max\{|F(x,t,\lambda)|, (x,t,\lambda) \in \overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V}_0\}.$$

Тогда второе слагаемое не превосходит μM и будет меньше $\varepsilon/3$ при $\mu M < \varepsilon/3$. Итак, мы требуем

$$V \subset V_1(\varepsilon), \quad I \subset \left(t_0 - \frac{\varepsilon}{3M}, t_0 + \frac{\varepsilon}{3M}\right).$$

2г. Наконец, требуется, чтобы Φ_{λ} сжимало, например, с коэффициентом q=1/2. Возьмём $x,\hat{x}\in E_{I,\varepsilon},\,\lambda\in V$. Тогда

$$|\Phi_{\lambda}(x) - \Phi_{\lambda}(\hat{x})| \leq \int_{t_0}^{t} |F(x(\tau), \tau, \lambda) - F(\hat{x}(\tau), \tau, \lambda)| d\tau \leq \int_{t_0}^{t} L|x(\tau) - \hat{x}(\tau)| d\tau \leq L|t_0 - t| \cdot ||x - \hat{x}||.$$

Следовательно, Φ_{λ} сжимает с коэффициентом $L\mu \leq L\varepsilon/3M$ и мы требуем, что

$$\frac{L\varepsilon}{3M}<\frac{1}{2}.$$

3. Выбор ε , I и V осуществляется теперь в таком порядке: сначала выберем $\varepsilon = \min(\varepsilon_0, 3M/2L)$, затем выберем $V = V_0 \cap V_1(\varepsilon)$ и $I \subset I_0 \cap (t_0 - \varepsilon/3M, t_0 + \varepsilon/3M)$.

Применяя принцип сжимающих отрезков с параметром, мы заключаем, что при $\lambda \in V$ существует решение $x(t,\lambda) = x_{\lambda}(t)$ задачи Коши, определённое на отрезке \overline{I} . При этом отображение $\lambda \mapsto x_{\lambda}$ из V в $E_{I,\varepsilon} \subset C(\overline{I} \to \mathbb{R}^n)$ непрерывно. Но это значит, что $x \colon \overline{I} \times V \to \mathbb{R}^n$ непрерывно, \overline{I} и первый пункт теоремы доказан.

$$|x(t,\lambda) - x(\hat{t},\hat{\lambda})| \le |x(t,\lambda) - x(\hat{t},\lambda)| + |x(\hat{t},\lambda) - x(\hat{t},\hat{\lambda})| \le \varepsilon/2 + ||x_{\lambda} - x_{\hat{\lambda}}|| \le \varepsilon/2 + \varepsilon/2 = \varepsilon.$$

 $^{^1}$ Приведём доказательство этого факта. Пусть $(t,\lambda) \in \overline{I} \times V$. Для $\varepsilon > 0$ найдём такую окрестность $V_{\varepsilon} \ni \lambda$, что при $\hat{\lambda} \in V_{\varepsilon}$ верно $\|x_{\lambda} - x_{\hat{\lambda}}\| < \varepsilon/2$ (это непрерывность $\lambda \mapsto x_{\lambda}$). С другой стороны, из непрерывности x_{λ} следует, что при $\hat{t} \in B_{\delta}(t)$ верно $|x_{\lambda}(t) - x_{\lambda}(\hat{t})| < \varepsilon/2$. Тогда при $(\hat{t}, \hat{\lambda}) \in B_{\delta}(t) \times V_{\varepsilon}$ получаем

4. Для доказательства единственности заметим, что, как видно из описанной в п. 3 процедуры выбора параметров, интервал I всегда можно укорачивать, не нарушая требования, перечисленные в пп. 2а-г. В частности, можно было бы воспользоваться единственностью неподвижной точки у сжимающего отображения Φ_{λ} на $E_{I\cap J,\varepsilon}$ (или, точнее, $E_{I\cap J',\varepsilon}$, где $J' \in J$ — нам нужно, чтобы \hat{x} было определено на замыкании рассматриваемого интервала). Однако мы не знаем, что $\hat{x}|_{\overline{I\cap J'}}$ лежит в $E_{I\cap J',\varepsilon}$. Поэтому это рассуждение требует следующей доработки.

Итак, пусть $J' \in J$ и $\hat{x}|_{\overline{I \cap J'}} \notin E_{I \cap J', \varepsilon}$. С другой стороны, $|\hat{x}(t_0) - x_0(\lambda_0)| = |x_0(\hat{\lambda}) - x_0(\lambda_0)| \le \varepsilon/2$ (поскольку $V \subset V_1(\varepsilon)$). Значит, существует интервал $K \subset I \cap J'$, $t_0 \in K$, такой что $\hat{x}|_{\overline{K}} \in E_{K,\varepsilon} \setminus E_{K,5\varepsilon/6}$ (проверьте!). Тогда $\hat{x}|_{\overline{K}}$ — неподвижная точка $\Phi_{\lambda} \colon E_{K,\varepsilon} \to E_{K,\varepsilon}$, однако $\Phi_{\lambda}(E_{K,\varepsilon}) \subset E_{K,5\varepsilon/6}$ (см. п. 2в), т. е. $\hat{x}|_{\overline{K}} = \Phi_{\lambda}(\hat{x}|_{\overline{K}}) \in E_{K,5\varepsilon/6}$.

Таким образом, $|\hat{x}(t) - x_0(\lambda_0)| \le \varepsilon$ при $t \in \overline{I \cap J'}$. Как уже говорилось, в этом случае $x|_{\overline{I \cap J'}}$ и $\hat{x}|_{\overline{I \cap J'}}$ будут неподвижными точками $\Phi_{\lambda} \colon E_{I \cap J', \varepsilon} \to E_{I \cap J', \varepsilon}$, а значит, совпадут. Поскольку $J' \in J$ произвольно, $x(t) = \hat{x}(t)$ при всех $t \in I \cap J$.

Замечание. Пусть F в этих теоремах — C^1 -гладкая функция на Ω (или хотя бы F'_x непрерывна на Ω) и $\Omega' \in \Omega$. Тогда, как следует из доказательства теоремы, длину отрезка I можно взять одной и той же для всех $(x_0(\lambda), t_0, \lambda) \in \Omega'$.

Действительно, $\overline{\Omega}'$ — компакт, поэтому непрерывная функция $\rho(x,\mathbb{R}^N\setminus\Omega)$ достигает на нём минимума β . Пусть $\Omega'' - \beta/2$ -окрестность Ω' . Тогда $\Omega'' \in \Omega$. Множество $\overline{B}_{\varepsilon_0}(x_0(\lambda_0)) \times \overline{I_0} \times \overline{V_0}$ в п. 2а будем выбирать так, чтобы оно лежало не только в Ω , но и в $\overline{\Omega''}$, при этом его размеры отделены снизу от нуля (нужно вырезать «кубик» в шарике радиуса $\beta/2$). В последующих пунктах для определения L и M нужны значения $\sup |F|$ и $\sup \|F_x'\|$ по этому «кубику», но их можно заменить теми же супремумами по всему компакту $\overline{\Omega''}$.

Это замечание понадобится нам далее, при обсуждении продолжимости решений.

2.1.4 Для знатоков: как доказать теорему существования и единственности с помощью теоремы о неявной функции

Есть другой подход к доказательству теорем существования, единственности, непрерывной и гладкой зависимости решения от параметров (о последней мы поговорим позже). Он основан на применении теоремы о неявной функции для банаховых пространств (её можно найти, например, во втором томе учебника Зорича по матанализу). Здесь мы будем считать, что F не только липшицева, но и C^1 -гладкая.

Как и выше, мы переходим к интегральному уравнению, только теперь переносим всё в одну часть.

$$(\Psi(x,\lambda))(t) := x(t) - x_0(\lambda) - \int_{t_0}^t F(x(\tau),\tau,\lambda) d\tau \equiv 0.$$

Непосредственно применять теорему о неявной функции не получается: мы же знаем, что решение существует на каком-то промежутке— то есть уравнение будет разрешимо при каком-то правильном выборе тех пространств, которые и отображает неявная функция, а в ней нет такой возможности. И кроме того, теорема о неявной функции требует наличия начальной точки, от которой и строится остальное решение— решения при $\lambda = \lambda_0$ — а мы не знаем, как его построить.

Но можно применить следующий трюк, принадлежащий Роббину: введём дополнительный параметр α , отвечающий масштабу времени:

$$y(\tau) = x(t_0 + \alpha \tau).$$

Независимая переменная τ будет меняться, например, на отрезке [-1,1].

Упраженение. а) Напишите, какой задаче Коши удовлетворяет $y(\tau)$.

- б) Напишите интегральное уравнение для $y(\tau)$. (Тем самым будет определено $\Psi(y,\lambda,\alpha)$.)
- ${\tt в}^*$) Проверьте, что функция Ψ гладкая (в смысле производных Фреше—см. учебник Зорича).
- г) Объясните, почему при $\alpha = 0$ решить уравнение $\Psi(y, \lambda, \alpha) = 0$ очень просто.
- д) Объясните, почему нужная в теореме о неявной функции производная обратима.
- е) Объясните, как из результата применения теоремы о неявной функции получить теорему существования и единственности для исходной задачи.

2.2 Продолжение решений

2.2.1 Максимальное решение задачи Коши

Заметим, что если решение $x: I \to \mathbb{R}^n$ задачи Коши (2.1.1) ограничить на подынтервал $J \subset I$, для которого $t_0 \in J$, то $x|_J$ снова будет решением той же задачи Коши. В этом случае мы говорим, что решение x является *продолжением* решения $x|_J$. Встаёт вопрос об однозначности продолжения решения.

Мы видели, что на локально, на малом интервале $(t_0 - \delta, t_0 + \delta)$, решение единственно. Докажем, что оно единственно и глобально: любые два решения совпадают на общей части их областей определения.

Теорема 2.2.1. Пусть функция f в задаче Коши (2.1.1) удовлетворяет условиям теоремы 2.1.3. Тогда если $x_{1,2}\colon J_{1,2}\to \mathbb{R}^n$ — два решения этой задачи Коши, то $x_1|_{J_1\cap J_2}=x_2|_{J_1\cap J_2}$.

Доказательство. Рассмотрим множество $T = \{t > t_0 : x_1|_{[t_0,t]} = x_2|_{[t_0,t]}\}$. Наша цель — доказать, что это множество совпадает с полуинтервалом $[t_0, \min(\sup J_1, \sup J_2))$. Положим $\sup T = \hat{t}$. Тогда $\bigcup_{\tau \in T} [t_0, \tau] \supset [t_0, \hat{t})$, поэтому $x_1|_{[t_0,\hat{t})} = x_2|_{[t_0,\hat{t})}$.

Предположим, что $\hat{t} < \sup J_{1,2}$. Заметим, что $\hat{t} > t_0$ по уже доказанной локальной единственности, поэтому \hat{t} — предельная точка для $[t_0,\hat{t})$, а тогда в силу непрерывности $x_{1,2}$ получаем, что $x_1(\hat{t}) = x_2(\hat{t})$.

Наконец, положим $y_0=x_j(\hat{t})$ и заметим, что обе функции $x_{1,2}$ являются решениями задачи Коши

$$\dot{x} = f(x, t), \qquad x(\hat{t}) = y_0,$$

а тогда $x_1(t)=x_2(t)$ при $t\in B_\delta(\hat{t}),$ что противоречит тому, что $\hat{t}=\sup T.$

Рассмотрим теперь множество $\mathcal{X} = \{x \colon J \to \mathbb{R}^n\}$ всех решений задачи Коши (2.1.1) и пусть \hat{J} — объединение их областей определения, которое будет открытым интервалом. По предыдущей теореме мы можем корректно определить функцию $\hat{x} \colon \hat{J} \to \mathbb{R}^n$: если $\tau \in \hat{J}$, то существует решение $x \colon J \to \mathbb{R}^n$ с $J \ni \tau$; тогда полагаем $\hat{x}(\tau) := x(\tau)$. Заметим, что поскольку в окрестности τ функции \hat{x} и x совпадают, а x— решение задачи Коши (2.1.1), то

$$(d\hat{x}/dt)(\tau) = (dx/dt)(\tau) = f(x(\tau), \tau) = f(\hat{x}(\tau), \tau).$$

Итак, для любого $\tau \in \hat{J}$ функция \hat{x} удовлетворяет уравнению $\dot{x} = f(x,t)$, а кроме того, $\hat{x}(t_0) = x_0$. Значит, \hat{x} — тоже решение задачи Коши (2.1.1). Оно называется максимальным (или непродолжаемым) решением этой задачи: любое другое получается из него ограничением на меньший интервал времени.

2.2.2 Продолжение до границы компакта

Как может «умереть» решение дифференциального уравнения? Оказывается, что при приближении к границе интервала существования непродолжимого решения это решение должно «стремиться к бесконечности» (или к границе области определения). Более точно это выражается следующей теоремой, которую называют теоремой о продолжении решений до границы компакта (или «за границу компакта»).

Для удобства мы будем предполагать чуть большую регулярность f, чем было указано в теореме существования и единственности — а именно, непрерывность f и f_x' . Вместо второго свойства достаточно было бы потребовать, что в любом компакте K внутри области Ω определения функции f было бы верно, что f липшицева по x с некоторой (зависящей от компакта) константой Липшица L. (Вывод «липшицевой» версии этого условия из «гладкой» обсуждается в замечании после теоремы существования и единственности.)

Как видно из доказательства теоремы существования и единственности, верно следующее

Утверждение 2.2.2. Рассмотрим задачу Коши (2.1.1), в которой $f, f'_x \in C(\Omega)$. Пусть $\varepsilon > 0$ таково, что множество $U = \{|x - x_0| \le \varepsilon, |t - t_0| \le \varepsilon\}$ лежит в Ω , и пусть $\sup_U |f| \le M$, $\sup_U \|f'_x\| \le L$. Тогда существует такое γ , зависящее только от чисел ε , M, L, что существование и единственность решения задачи Коши гарантируются на интервале $(t_0 - \gamma, t_0 + \gamma)$.

Перейдём теперь к самой теореме о продолжении до границы компакта.

Теорема 2.2.3. Рассмотрим задачу Коши (2.1.1), в которой $f, f'_x \in C(\Omega)$. Пусть $K \subset \Omega$ – компакт. Тогда если $x: (\alpha, \beta) \to \mathbb{R}^n$ – непродолжимое решение, то существует такое $\beta' < \beta$, что $(x(t), t) \notin K$ при $t \in (\beta', \beta)$.

Доказательство. 1. Утверждение ясно, если $\beta = +\infty$: K ограничен сверху по оси t некоторым числом β' .

2. В случае $\beta \in \mathbb{R}$ докажем, что существует такое $\gamma > 0$, что любая задача Коши

$$\dot{x} = f(x,t), \quad x(\tau) = \xi, \tag{2.2.1}$$

в которой $(\tau, \xi) \in K$, имеет решение на интервале $(\tau - \gamma, \tau + \gamma)$.

Рассмотрим следующую непрерывную (и даже 1-липшицеву) функцию d на \mathbb{R}^{n+1} :

$$d(p) = \operatorname{dist}(p, \mathbb{R}^{n+1} \setminus \Omega).$$

Во всех точках $p \in \Omega$ она принимает положительные значения (так как Ω открыто). На компакте K эта функция достигает минимума в некоторой точке, а потому $\eta = \min_{d \in K} d(p) > 0$. Если $\Omega = \mathbb{R}^{n+1}$, то $\min_{d \in K} d(p) = +\infty$ и мы положим $\rho = 1$, иначе $\eta \in \mathbb{R}$ и мы положим $\rho = \eta/2$.

Рассмотрим теперь множество $K^{\rho} = \{q \in \mathbb{R}^{n+1} : \operatorname{dist}(q,K) \leq \rho\}$. Оно ограничено и замкнуто (как прообраз $[0,\rho]$ при непрерывном отображении $q \mapsto \operatorname{dist}(q,K)$), а значит, компактно. Кроме того, $K^{\rho} \subset \Omega$: если $q \in K^{\rho}, \ q \notin \Omega$, то существует $r \in K$, для которого $\operatorname{dist}(r,q) \leq \rho$; но с другой стороны, $\operatorname{dist}(r,q) \geq \eta$ — и мы приходим к противоречию $\eta \leq \rho$.

Пусть $M = \sup_{K^{\rho}} |f|, L = \sup_{K^{\rho}} |f'_x||, \varepsilon = \rho/\sqrt{2}$. Тогда множество $U = \{|x-x_0| \le \varepsilon, |t-t_0| \le \varepsilon\}$ лежит в K^{ρ} и осталось применить утверждение 2.2.2.

3. Покажем теперь, что в теореме можно взять $\beta' = \beta - \gamma$. Действительно, если при некотором $\tau \in (\beta - \gamma, \beta)$ было бы верно, что $(x(\tau), \tau) \in K$, то задача Коши (2.2.1) с $\xi = x(\tau)$ имела бы два решения: исходное на интервале (α, β) и гарантированное утверждением предыдущего пункта, определённое на $(\tau - \gamma, \tau + \gamma)$. Получаем противоречие: $(\tau - \gamma, \tau + \gamma) \not\subset (\alpha, \beta)$, так как $\tau + \gamma > \beta$, а тогда исходное решение x не является непродолжимым.

2.2.3 Операторы Коши

Пусть задано уравнение $\dot{x}=f(x,t)$. Операторы Коши для него — это отображения $X_{r,s}$ $(r,s\in\mathbb{R})$, определённые на некоторых подмножествах \mathbb{R}^n по следующему правилу. Чтобы найти $X_{r,s}(y)$, возьмём (предполагая $(r,y)\in\Omega$) максимальное решение x(t) задачи Коши для этого уравнения с начальным условием x(r)=y. Тогда, если z=x(s) определено, то $X_{r,s}(y)=z$.

Обсудим вопрос о непрерывной зависимости $X_{r,s}$ от аргумента и от параметров λ уравнения, если таковые имеются.

Итак, пусть $X_{t_0,s}^{(\lambda)}$ — оператор Коши для уравнения $\dot{x}=f(x,t,\lambda)$. Рассмотрим задачу Коши

$$\dot{x} = f(x, t, \lambda), \quad x(t_0) = y$$
 (2.2.2)

Тогда из теоремы о непрерывной зависимости от параметра (а параметр у нас — это пара (λ, y)) мы получаем, что если $(y_0, t_0, \lambda_0) \in \Omega$, то $X_{t_0, s}^{(\lambda)}(y)$ определено при (y, s, λ) из некоторой окрестности (y_0, t_0, λ_0) , и непрерывно там по совокупности всех этих аргументов.

Чтобы получить непрерывность $X_{r,s}$ при любых r и s, мы воспользуемся тем же приёмом, что и в предыдущем пункте.

Доказательство теоремы о существовании, единственности и непрерывной зависимости от параметров в применении к задаче Коши (2.2.2) с параметрами (λ, y) , даёт следующее

Утверждение 2.2.4. Рассмотрим задачу Коши (2.2.2), в которой $f, f_x' \in C(\Omega)$. Пусть $\varepsilon > 0$ таково, что множество $U = \{|x - y_0| \le \varepsilon, |t - t_0| \le \varepsilon, |\lambda - \lambda_0| \le \varepsilon\}$ лежит в Ω , и пусть $\sup_U |f| \le M$, $\sup_U \|f_x'\| \le L$. Тогда существует такое γ , зависящее только от чисел ε , M, L, что решение задачи Коши на интервале $(t_0 - \gamma, t_0 + \gamma)$ существует для всех λ , достаточно близких к λ_0 , и всех у из $\varepsilon/2$ -окрестности y_0 , и непрерывно зависит от тройки (y, t, λ) .

Теорема 2.2.5. Пусть оператор Коши $X_{r_0,s_0}^{(\lambda_0)}(y_0)$ определён. Тогда величина $X_{r_0,s}^{(\lambda)}(y)$ определена при (y,s,λ) , достаточно близких к (y_0,s_0,λ_0) , и непрерывно зависит там от этих аргументов.

Доказательство. Если $s_0 = r_0$, то это предыдущее утверждение. Будем далее предполагать, что $s_0 > r_0$ (второй случай полностью аналогичен).

Пусть $x_0(t)$ — решение задачи Коши с (λ_0, y_0) . Рассмотрим кривую $K = \{(x_0(t), t, \lambda_0), t \in [r_0, s_0]\}$. Как и в предыдущей теореме, рассмотрим её компактную окрестность K^ρ , лежащую в Ω , и положим $M = \sup_{K^\rho} |f|, L = \sup_{K^\rho} |f'_x|, \varepsilon = \rho/\sqrt{3}$.

Разобьём отрезок $[r_0, s_0]$ на отрезки длины, меньшей γ : $r_0 = t_0 < t_1 < \cdots < t_m = s_0$. Определим отображения

$$\Phi_j(y, s, \lambda) = (X_{t_i, t_{i+1}}^{(\lambda)}(y), s, \lambda), \quad j = 0, \dots, m - 2, \qquad \Phi_{m-1}(y, s, \lambda) = (X_{t_{m-1}, s}^{(\lambda)}(y), s, \lambda).$$

Как следует из утверждения 2.2.4, отображение Φ_j определено в окрестности точки $(x_0(t_j)), s_0, \lambda_0)$, непрерывно в ней и переводит саму точку $(x_0(t_j)), s_0, \lambda_0)$ в $(x_0(t_{j+1})), s_0, \lambda_0)$. Действительно, для точки $(x_0(t_j), t_j, \lambda)$ множество U из этого утверждения лежит в K_ρ , а тогда оператор Коши $X_{t_j, t_{j+1}}^{(\lambda)}(y)$ будет определён в малой её окрестности и непрерывен по (y, λ) . Для Φ_{m-1} мы аналогично получаем непрерывную зависимость от всей тройки (y, s, λ) .

Соответственно, композиция $\Phi_{m-1} \circ \cdots \circ \Phi_0$ непрерывных отображений определена в окрестности $(x_0(t_i)), s_0, \lambda_0)$ и непрерывна там.

С другой стороны,

$$X_{r_0,s}^{(\lambda)}(y) = X_{t_{m-1},s}^{(\lambda)} \circ X_{t_{m-2},t_{m-1}}^{(\lambda)} \circ \cdots \circ X_{t_0,t_1}^{(\lambda)}(y),$$

поэтому если $\pi(y,\lambda,s)=y$, то $\pi\circ\Phi_{m-1}\circ\cdots\circ\Phi_0(y,\lambda,s)=X_{r_0,s}^{(\lambda)}(y)$, и непрерывность оператора Коши доказана.

Утверждение теоремы можно ещё немножко усилить, рассмотрев зависимость и от начального момента времени.

Следствие 2.2.6. Пусть оператор Коши $X_{r_0,s_0}^{(\lambda_0)}(y_0)$ определён. Тогда величина $X_{r,s}^{(\lambda)}(y)$ определена при (y,r,s,λ) , достаточно близких к (y_0,r_0,s_0,λ_0) , и непрерывно зависит там от этих аргументов.

Доказательство. Добавим дополнительный параметр $\mu \in \mathbb{R}$ и рассмотрим задачу Коши

$$\dot{x} = f(x, t + \mu, \lambda), \quad x(0) = y.$$

Если $X_{r,s}^{(\lambda)}$ — оператор Коши для исходной задачи, а $\mathbf{X}_{r,s}^{(\lambda,\mu)}$ — для этой, то (проверьте!) справедливо равенство

$$X_{r,s}^{(\lambda)}(y) = \mathbf{X}_{0,s-r}^{(\lambda,r)}(y).$$

Остаётся заметить, что правая часть последнего равенства непрерывно зависит от (y, r, s, λ) по предыдущей теореме.

Идея, стоящая за этим доказательством, очень проста: из предыдущей теоремы следует, что преобразование потока автономной системы непрерывно по совокупности аргументов. Сведём неавтономную систему к автономной, при этом операторы Коши исходной системы выразятся через преобразования потока новой системы и потому будут непрерывны.