Листок 2. Многообразия (карты, атласы, ориентриуемость) Гладкие многообразия

Крайний срок сдачи 11.10.2019

- **1.** Можно ли на границе единичного квадрата ввести (а) структуру гладкого многообразия? (б) структуру подмногообразия \mathbb{R}^2 ?
 - **2.** Задайте на торе $\mathbb{T}^2 = S^1 \times S^1$ гладкий атлас.
- **3.** Введите на множестве всех прямых на плоскости структуру многообразия, так, чтобы оно было изоморфно листу Мёбиуса.
 - **4.** Покажите, что $SL(2,\mathbb{R})$ как многообразие диффеоморфно полноторию.
- **5.** Обозначим через $\mathrm{Mat}_n(\mathbb{R})\simeq \mathbb{R}^{n\times n}$ множество вещественных $n\times n$ матриц с нормой $|A|^2=\sum_{i..i}|a_i^j|^2.$
- (а) Покажите, что $GL_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \det A \neq 0\}$ является гладким многообразием, найдите его размерность. Является ли $GL(n,\mathbb{R})$ подмногообразием $\operatorname{Mat}_n(\mathbb{R})$?
- (б) Покажите, что $\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_n(\mathbb{R}) \mid \det A = 1\}$ является гладким многообразием, найдите его размерность. Является ли $\mathrm{SL}(2,\mathbb{R})$ подмногообразием $\mathrm{GL}(2,\mathbb{R})$?
- (в) Покажите, что $N_n = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \det A = 0\}, n > 1$ не является гладким подмногообразием \mathbb{R}^{n^2} относительно стандартной топологии.
- (г)* Покажите, что $N_n, n > 1$ не является гладким многообразием относительно стандартной топологии.
- **6.** (a) Приведите пример неориентируемого многообразия с краем, край которого ориентируем.
 - (б) Постройте атлас $\mathbb{R}P^2$ и покажите, что оно неориентируемо.
- (в) Постройте атласы $\mathbb{R}P^n$. При каких n эти многообразия являются ориентируемыми, а при каких нет?
- 7. (a) Докажите, что лист Мебиуса и бутылка Клейна неориентируемые многообразия. (б)* Докажите, что двумерное многообразие тогда и только тогда ориентируемо, когда не содержит в себе листа Мебиуса.
- **8.** Пусть (M,A) и (\tilde{M},\tilde{A}) многообразия с заданными на них гладкими $C^{(k)}$ -структурами. Гладкие структуры (M,A) и (\tilde{M},\tilde{A}) считаются изоморфными, если существует такое $C^{(k)}$ -отображение $f:M\to \tilde{M}$, которое имеет обратное $f^{-1}:M\to \tilde{M}$ также $C^{(k)}$ -отображение в атласах A,\tilde{A} .
- (а) Покажите, что гладкая структура на \mathbb{R} , заданная картой $\varphi(x) = x$, изоморфна, но не равна, гладкой структуре на \mathbb{R} , заданной картой $\psi(x) = x^3$.
 - (б) Покажите, что на ℝ все структуры одинаковой гладкости изоморфны.
- (в)* Покажите, что на окружности S^1 любые две $C^{(\infty)}$ -структуры изоморфны. (Отметим, что это свойство остается верным вплоть до сферы S^6 , а на сфере S^7 , напротив, существуют неэквивалентные $C^{(\infty)}$ -структуры.)