Course Title (in English)	Quantum integrable systems
Course Title (in Russian)	Квантовые интегрируемые системы
Lead Instructor(s)	Zabrodin, Anton
Status of this Syllabus	The syllabus is a final draft waiting for form approval
Contact Person	Anton Zabrodin
Contact Person's E-mail	zabrodin@itep.ru

1. Annotation

Course Description

The course is devoted to quantum integrable systems. The history of quantum integrable systems starts from 1931 when
H.Bethe managed to construct exact eigenfunctions of the Hamiltonian of the Heisenberg spin chain with the help of a special substitution which became famous since that time (ansatz Bethe). In one or another form this method turns out to be applicable to many spin and field-theoretical integrable models. From the mathematical point of view, Bethe's method is connected to representation theory of quantum algebras (q-deformations of universal enveloping algebras and Yangians).

Here is the list of topics which will be discussed in the course.

- Coordinate Bethe ansatz on the example of the Heisenberg model and one-dimensional Boe gas with point-like interaction between particles.
- Bethe ansatz in exactly solvable models of statistical mechanics on the lattice.
- Calculation of physical quantities in integrable models in thermodynamic limit, thermodynamic Bethe ansatz.
- Bethe equations and the Yang-Yang function, caclulation of norms of Bethe vectors.
- Quantum inverse scattering method and algebraic Bethe ansatz, quantum Rmatrices, transfer matrices, Yang-Baxter equation.
- Functional Bethe ansatz and the method of Baxter's Q-operators, functional relations for transfer matrices, transfer matrices as classical tau-functions.

The knowledge of quantum mechanics and statistical physics for understanding of the course is highly desirable but not absolutely necessary. Out of the physical context ansatz Bethe in its finite-dimensional version is simply a method for diagonalization of big matrices of a special form. In this sense it does not require anything except the basic notions of linear algebra.

Students should have basic knowledge of linear algebra, quantum mechanics and statistical physics.
2. Structure and Content
Course Academic Level Master-level

Number of ECTS credits 6

Topic	Summary of Topic	Lectures (\# of hours)	Seminars (\# of hours)	Labs (\# of hours)
Coordinate Bethe ansatz	Coordinate Bethe ansatz in the spin chain (Heisenberg magnet) and in one-dimensional Bose gas. Bethe wave function. Bethe equations.	6	0	0
Bethe ansatz in exactly solvable models of statistical mechanics on the lattice	Bethe ansatz in exactly solvable models of statistical mechanics on the lattice. Six-vertex model.	6	0	0
Calculation of physical quantities in integrable models in thermodynamic limit	Calculation of thermodynamic quantities in integrable models in thermodynamic limit. Thermodynamic Bethe ansatz. Yang's integral equation.	6	0	0
Quantum inverse scattering method	Quantum inverse scattering method and algebraic Bethe ansatz, quantum R-matrices, transfer matrices, Yang-Baxter equation	4	0	0
Functional Bethe ansatz	Functional Bethe ansatz and the method of Baxter's Q- operators, functional relations for transfer matrices, transfer matrices as classical tau-functions.	4	0	0
Quantum-classical correspondence	Functional relations for quantum transfer matrices as the mKP hierarchy of classical integrable equations	2	0	0

3. Assignments

Assignment Type	Assignment Summary
Problem Set	A set of problems on the course.
Homework	A set of problems for solving at home.

4. Grading

Type of Assessment

Grade Structure

Graded

Activity Type	Activity weight, \%	
Homework Assignments	20	
Class participation	20	
Problem Set	60	

A:	Grading Scale
B:	86
C:	76
D:	66
E:	56
F:	46
O	

5. Basic Information

Attendance Requirements

Maximum Number of Students

Course Stream

Course Term (in context of Academic Year)

Course Delivery Frequency
Students of Which Programs do You Recommend to Consider this Course as an Elective?

Mandatory with Exceptions

	Maximum Number of Students
Overall:	7
Per Group (for seminars and labs):	7

Science, Technology and Engineering (STE)
Term 3
Term 4
Every two years

Masters Programs	PhD Programs
Mathematical and Theoretical Physics	

Math
Physics
6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN-10)			
N.M.Bogoliubov, A.G.Izergin, V.E.Korepin, Correlation functions of integrable systems and quantum inverse scattering method, Moscow, Nauka, 1992	5-02-014626- 7			
Recommended Textbooks				ISBN-13 (or ISBN-10)
R.Baxter, Exactly solved models in statistical mechanics, Academic Press, 1982	9780486462714			
Web-resources (links)				Description
http://people.sissa.it/ ffranchi/BAnotes.pdf	Notes on Bethe ansatz			

7. Facilities

8. Learning Outcomes

Knowledge

Students will be familiar with general principles of the theory of quantum integrable systems

Skill

Students will be able to calculate physical quantities in quantum integrable systems

Experience

Students will get experience of dealing with quantum integrable systems and exactly solvable models of statistical mechanics

Do you want to specify

 outcomes in another framework?
9. Assessment Criteria

Select Assignment 1 Type

Assessment Criteria for Assignment 1

Knowledge-Skill-Experience is good enough

Problem Set

Correct written solutions of most of the given problems. Ability to explain the solution in conversation.

10. Additional Notes

Web-resources (links)	Description
http://people.sissa.it/ ffranchi/BAnotes.pdf	Notes on Bethe ansatz

