

Course Title (in English) Geometric Representation Theory

Course Title (in Russian) Геометрическая теория представлений

Lead Instructor(s)

Braverman, Alexander
Finkelberg, Michael

Status of this Syllabus The syllabus is a final draft waiting for form approval

Contact Person Michael Finkelberg

Contact Person's E-mail fnklberg@gmail.com

1. Annotation

Course Description

Geometric representation theory applies algebraic geometry to the problems of representation theory. Some of the most famous problems of representation theory were solved on this way during the last 40 years. The list includes the Langlands reciprocity for the general linear groups over the functional fields, the Langlands-Shelstad fundamental Lemma, the proof of the Kazhdan-Lusztig conjectures; the computation of the characters of the finite groups of Lie type. We will study

representations of the affine Hecke algebras using the geometry of affine Grassmannians (Satake isomorphism) and Steinberg varieties of triples (Deligne-Langlands conjecture). This is a course for master students knowing the basics of algebraic geometry, sheaf theory, homology and K-theory.

Course Prerequisites The basic algebraic geometry, sheaf theory, homology and K-theory.

2. Structure and Content

Course Academic Level Master-level course suitable for PhD students

Number of ECTS credits 6

Topic	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Affine Grassmannians.	Schubert varieties of finite and infinite codimension, semiinfinite orbits.	10	5	
Hyperbolic stalks.	Dimension estimates for the intersection of semiinfinite and G(O)-orbits. Exactness of the hyperbolic stalks.	10	5	
Convolution.	Exactness of convolution. Convolution vs. fusion. Commutativity constraint.	10	5	
Kazhdan- Lusztig-Ginzburg construction.	Demazure operators in the equivariant K-theory of the Steinberg triple variety. Relation of Borel-Moore homology and Ext-algebra for semismall resolutions.	10	5	

3. Assignments

Assignment Type	Assignment Summary
Problem Set	Problems on the intersection cohomology sheaves on affine Grassmannian.
Problem Set	Problems on the nearby and vanishing cycles.
Problem Set	Problems on the Hall algebra and the spherical affine Hecke algebra.

4. Grading

Type of Assessment	Graded
Type of Assessment	Graded

Grade Structure	Activity Type	Activity weight, %
	Homework Assignments	67
	Final Exam	33

Grading Scale

A:	80
B:	70
C:	60
D:	50
E:	40
F:	30

5. Basic Information

Attendance Requirements	Optional
	- 1

Maximum Number of Students

	Maximum Number of Students
Overall:	10
Per Group (for seminars and labs):	10

Course Stream

Science, Technology and Engineering (STE)

Course Term (in context of

Academic Year)

Term 1 Term 2

Students of Which Programs do You Recommend to Consider this Course as an Elective?

Masters Programs	PhD Programs
IVIATNEMATICAL AND THEORETICAL PRIVSICS	Mathematics and Mechanics Physics

Please List the Teaching Assistants (TAs) You Propose for Your Course

First Name	Last Name
Alexei	Litvinov

Course Tags

Math **Physics**

6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN- 10)
Chriss N., Ginzburg V., Representation theory and complex geometry. Birkhauser, Boston, 2010.	978-0-8176-4937-1

Recommended Textbooks	ISBN-13 (or ISBN-10)
Macdonald I.G., Symmetric functions and Hall algebras, Clarendon Press, 2015.	978-0-19-873912-8

7. Facilities

8. Learning Outcomes

Knowledge	
Geometry of the affine Grassmannians.	

Skill

Working knowledge of computations with intersection cohomology sheaves.

Experience

Experience of working with the Hall algebra and spherical affine Hecke algebras.

Do you want to specify outcomes in another framework?

Knowledge-Skill-Experience is good enough

9. Assessment Criteria

Select Assignment 1 Type

Input Example(s) of Assignment 1 (preferable)

Problem Set

- 1. Prove that the IC sheaves with complex coefficients of the G(O)-orbit closures in the affine Grassmannian of GL(2) are constant.
- 2. Find the IC stalks with coefficients in the algebraic closure of a finite field of characteristic p of the G(O)-orbit closures in the affine Grassmannian of GL(2).
- 3. Find the IC stalks of the minimal G(O)-orbit closure in the affine Grassmannian of a simple algebraic group G.
- 4. Find the hyperbolic stalks in the problem 3 above.
- 5. Find the usual and hyperbolic stalks of the IC sheaf of the nilpotent cone of a simple Lie algebra g.
- 1. Correct proof: 10 points; incorrect proof: 0 points.
- 2. Correct answer for all p: 10 points; correct answer for p>2: 8 points; correct answer for p=infty: 5 points.
- 3. Correct answer for all G: 10 points; correct answer for classical G: 5 points.
- 4. Correct answer for all G: 10 points; correct answer for classical G: 5 points.
- 5. Correct answer for all g: 10 points; correct answer for classical g: 5 points.

10. Additional Notes

Assessment Criteria for

Assignment 1