

Course Title (in English)	Statistical mechanics, percolation theory and conformal invariance
Course Title (in Russian)	Статистическая физика, просачивание и конформная инвариантность
Lead Instructor(s)	Shlosman, Semen
Status of this Syllabus	The syllabus is a final draft waiting for form approval
Contact Person	Senya Shlosman
Contact Person's E-mail	shlosman@gmail.com

1. Annotation

Course Description	This is a course on rigorous results in statistical mechanics, random fields and percolation theory. Some of it will be dedicated to the theory of phase transition uniqueness or non-uniqueness of the lattice Gibbs fields. We will also study the models at the criticality, where one hopes to find (in dimension 2) the onset of conformal invariance. We will see that it is indeed the case for the percolation at the Ising model. The topics will include: Crossing probabilities Critical percolation The Busso-Seymour-Welsh theory
	Cardy's formula Parafermionic observables Conformal invariance of two-dimensional percolation Conformal invariance of two-dimensional Ising model O(N)-symmetric models The Mermin–Wagner Theorem The Berezinskii–Kosterlitz–Thouless transition Reflection Positivity and the chessboard estimates Infrared bounds
Course Prerequisites	This course is a continuation of my course on Statistical Physics, so some familiarity with percolation theory and the Ising model is assumed. It is desirable that the students are familiar with the probability theory, measure theory, functional analysis, and complex analysis. Of course, the calculus knowledge is assumed.

Course Academic Level

Master-level

6

Number of ECTS credits

Торіс	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Crossing probabilities	The behavior of the probabilities of having a left-right crossing in the rectangle box. Subcritical, supercritical and critical case.	1	3	
Critical percolation	The value of the critical probability. Sharpness of the criticality. Power-law decay of connectivities.	1	3	
The Russo-Seymour- Welsh theory	Crossing probabilities for rectangles with arbitrary aspect ratio.	1	3	
Cardy's formula	The exact formula for crossing probabilities.	1	3	
Parafermionic observables		1	3	
Conformal invariance of two-dimensional percolation	The proof of the Theorem of Stanislav Smirnov	1	3	
Conformal invariance of two-dimensional Ising model		1	3	
O(N)-symmetric models	Systems with continuous symmetry in 2D and 3D. Continuous symmetry breaking.	1	3	
The Mermin–Wagner Theorem	No Goldstone bosons in 2D.	1	3	
The Berezinskii– Kosterlitz–Thouless transition	Vortices and the Coulomb gase. Dipoles. Debye screening.	1	3	
Reflection Positivity and the chessboard estimates. Infrared bounds		1	3	

3. Assignments

Assignment Type	Assignment Summary
Test/Quiz	Will be decided later.

4. Grading

Type of Assessment

Pass/Fail

Grade Structure

Activity Type	Activity weight, %
Final Exam	50
Class participation	30
Report	20

Grading Scale

5. Basic Information

Attendance Requirements Mandatory with Exceptions

		Maximum Number of Students	
Maximum Number of Students	Overall:	20	
	Per Group (for seminars and labs):	20	
Course Stream	Science, Technology and Engineering (STE)		
Course Term (in context of Academic Year)	Term 3		
Course Delivery Frequency	Upon request		
Students of Which Programs do	Masters Programs	PhD Programs	
this Course as an Elective?	Mathematical and Theoretical Physics	Mathematics and Mechanics	
0	N 4 - 41		
Course Lags	Math		

6. Textbooks and Internet Resources

Required Textbooks	ISBN-13 (or ISBN-10)
Theory of Phase Transitions: Rigorous Results by Ya. G. Sinai	9780080264691
G. Grimmett. Percolation. Springer-Verlag, Berlin, 1999.	978-3-642-08442-3

Recommended Textbooks	ISBN-13 (or ISBN-10)
Statistical Physics L D Landau E.M. Lifshitz	9780080570464

Papers	DOI or URL
Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515–580, 2012.	

Web-resources (links)	Description
http://www.unige.ch/math/folks/velenik/smbook/index.html	Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction

7. Facilities

Software

Mathematica

Equipment

laptop

Labs for Education

None

8. Learning Outcomes

Knowledge		
Theory of random fields, in particular, Markov fields and Gibbs fields. Mathematical theory of phase transitions. Random surfaces. Critical phenomena. Conformal invariance		
	Skill	
Ability to read and understand th Statistical Physics and (some) pa	e literature on rigorous statistical physics and percolation theory, e.g. Journal of apers in Communications in Mathematical Physics.	
Ability to formulate and sometim	e also solve problems in the theory of phase transitions and related areas.	
	Experience	
Experience of working in the area {mathematical physics}cap{prob	a of ability theory}=ProbaΦ	
Do you want to specify outcomes in another framework?	Knowledge-Skill-Experience is good enough	
9. Assessment Criteria		
Select Assignment 1 Type	Test/Quiz	
Input Example(s) of Assignment 1 (preferable)	Prove the existence of phase transition for the Ising model on uniform (infinite) Cayley tree.	
Assessment Criteria for Assignment 1	A - for the correct proof. For a wrong or incomplete proof - depending on the sketch.	
Select Assignment 2 Type	Test/Quiz	
Input Example(s) of Assignment 2 (preferable)	Are there phase transitions of the first order in 2D models with finite range interaction possessing continuous symmetry?	
Assessment Criteria for Assignment 2	A - for either a complete proof or for an example. For a wrong or incomplete proof - depending on the sketch.	
10. Additional Notes		

Web-resources (links)	Description
http://www.unige.ch/math/folks/velenik/smbook/index.html	Statistical Mechanics of Lattice Systems: a Concrete Mathematical Introduction