

Course Title (in English)	Lie groups and Lie algebras, and their representations
Course Title (in Russian)	Группы и алгебры Ли и их представления
Lead Instructor(s)	Olshanski, Grigori
Status of this Syllabus	The syllabus is a final draft waiting for form approval
Contact Person	Grigori Olshanski
Contact Person's E-mail	olsh2007@gmail.com

1. Annotation

Course Description	We shall begin with the basics of the theory of Lie groups and Lie algebras. Then we shall provide an accessible introduction to the theory of finite-dimensional representations of classical groups on the example of the unitary groups U(N). Tentative plan: linear Lie groups and their Lie algebras; universal enveloping algebras; Haar measure on a linear Lie group; general facts about representations of compact groups and their characters; radial part of Haar measure; Weyl's formula for characters of the unitary groups; Weyl's unitary trick; classification and realization of representations; symmetric functions.
Course Prerequisites	Good knowledge of linear algebra; basics of multivariable calculus; understand the definition of topological space, smooth manifold, tangent space; some knowledge
	of the basics of representation theory of finite groups (not mandatory, but desirable).
2. Structure and Content	
Course Academic Level	Master-level course suitable for PhD students
Number of ECTS credits	6

Торіс	Summary of Topic	Lectures (# of hours)	Seminars (# of hours)	Labs (# of hours)
Lie theory	Definition of Lie group. Linear Lie groups. Subgroups of Lie groups. Exponential map. Definition of Lie algebra. Connections between Lie groups and Lie algebras.			
Lie algebras	Universal enveloping algebra of a Lie algebra. Its center. Symmetric algebra of a Lie algebra. PBW theorem. Representations of sl(2).			
Representations and characters	Haar measure. Weyl's formula for characters. Classification and realization of representations. Introduction to the theory of symmetric functions.			

3. Assignments

Assignment Type	Assignment Summary
Problem Set	About 40 exercises covering the whole material

4. Grading

Type of Assessment	Graded	
Grade Structure	Activity Type	Activity weight, %
	Class Participation	-45

Grading Scale

A:	80
В:	70
C:	60
D:	50
E:	40
F:	30

5. Basic Information

Attendance Requirements

Optional

		Maximum Number of Students
Maximum Number of Students	Overall:	30
	Per Group (for seminars and labs):	

Course Stream	Science, Technology and Engineering (STE)	
Course Term (in context of Academic Year)	Term 1 Term 2	
Students of Which Programs do You Recommend to Consider this Course as an Elective?	Masters Programs	PhD Programs
	Mathematical and Theoretical Physics	Mathematics and Mechanics
Course Tags	Math	
6. Textbooks and Internet Resou	rces	

|--|

Recommended Textbooks	ISBN-10 or ISBN-13
William Fulton and Joe Harris, Representation theory (Russian translation available)	978-0-387-97495-8
Jacques Faraut, Analysis on Lie groups. An introduction.	978-0-521-71930-8

Web-resources	Description

7. Facilities

Software

8. Learning Outcomes

Knowledge	
Lie Theory. Basics of finite-dimensional representation theory	

Skill Working knowledge of basic constructions in Lie theory and in representation theory of compact groups

Experience of working with Lie groups, Lie algebras, finite-dimensional representations, and characters

Do you want to specify outcomes in another framework?

Knowledge-Skill-Experience is good enough

9. Assessment Criteria

Experience

Input Example(s) of Assignment 1 (preferable) 1. Let M and N be smooth manifolds, $M' \subset M$ and $N' \subset N$ be their closed submanifolds, and $f : M \to N$ be a smooth map such that $f(M') \subseteq N'$. Prove that the restriction of f to M' is a smooth map M' $\to N'$.

2. Show that for smooth manifolds, the properties of being connected space or linearly connected space coincide.

3. Write explicitly the exponential map for the ax+b group.

4. Find the image of the exponential map for the following Lie groups: a) GL(N,C); b) SO(N); c) the group of real unitriangular N \times N matrices.

10. Additional Notes