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1. INTRODUCTION AND MAIN RESULTS

Let N be the maximal unipotent subgroup of a semisimple group of
simply-laced type; let m=dim N. Recently, Lusztig [29, 30] discovered a
remarkable parallelism between

(1) labellings (by m-tuples of nonnegative integers) of the canonical
basis B of the quantum group corresponding to N, and

(2) parametrizations of the variety N>0 of totally positive elements
in N by m-tuples of positive real numbers.

In each case, there is a natural family of parametrizations, one for each
reduced word of the element of maximal length in the Weyl group.

In this paper, the following two problems are solved for the type A.

Problem I. For any pair of reduced words, find an explicit formula for
the transition map that relates corresponding parametrizations of B or N>0.

Problem II. Each parametrization in (2) is a restriction of a birational
isomorphism Cm � N. For any reduced word, find an explicit formula for
the inverse map N � Cm.

Our results have the following applications:

(i) a new proof and generalization of piecewise-linear minimization
formulas for quivers of type A given in [23, 24], and

(ii) a new family of criteria for total positivity generalizing and refining
the classical Fekete criterion [13].

In order to treat Problems I and II simultaneously, we develop a general
framework for studying Lusztig's transition maps, in which the role of
scalars is played by an arbitrary zerosumfree semifield. Our methods rely
on an interpretation of reduced words via pseudo-line arrangements. The
solutions of the above problems are then obtained by means of a special
substitution that we call the Chamber Ansatz.

We now begin a systematic account of our main results. Since we shall
only treat the Ar type, N will be the group of unipotent upper triangular
matrices of order r+1; its dimension is equal to m=( r+1

2 ). Then Problem
II can be reformulated as the following problem in linear algebra.

1.1. Problem. For a generic unipotent upper-triangular matrix x of
order r+1, find explicit formulas for the factorizations of x into the mini-
mal number of elementary Jacobi matrices.
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To be more precise, by an elementary Jacobi matrix we mean a matrix
of the form

1+tei=\
1

+
. . .

1 t
1

. . .
1

where ei is an (i, i+1) matrix unit. The minimal possible number of such
matrices needed for factoring a generic x # N is easily seen to be dim N=
m=( r+1

2 ). Then, for a sequence h=(h1 , ..., hm) of indices, we consider fac-
torizations

x=(1+t1 eh1
) } } } (1+tmehm). (1.1)

It is not hard to show that such a factorization of a generic matrix x # N
exists and is unique if and only if h is a reduced word of the element w0

of maximal length in the symmetric group Sr+1 , i.e., w0=sh1
} } } shm where

the si=(i, i+1) are adjacent transpositions.
Moreover, for a given reduced word h, each coefficient tk in (1.1) is a

rational function in the matrix entries xij that we denote by th
k to emphasize

the role of h. Thus the map t [ x=xh(t) defined by (1.1) is a birational
isomorphism Cm � N. In this notation, Problem 1.1 asks for explicit com-
putation of the inverse rational map t h: N � Cm.

1.2. Example. Let r=2. In this case, there are two reduced words for w0 :

h=121, h$=212.

Denote th
k(x)=tk , th$

k (x)=t$k for k=1, 2, 3. Thus we are interested in the
factorizations

x=(1+t1 e1)(1+t2e2)(1+t3e1)=(1+t$1e2)(1+t$2e1)(1+t$3 e2) (1.2)

of a generic unitriangular 3_3-matrix x. Multiplying the matrices in (1.2),
we obtain

x=\
1 x12 x13

+=\
1 t1+t3 t1 t2

+=\
1 t$2 t$2 t$3

+ . (1.3)0 1 x23 0 1 t2 0 1 t$1+t$3
0 0 1 0 0 1 0 0 1
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Solving these equations for the tk and t$k , we find

t1=
x13

x23

, t2=x23 , t3=
x12x23&x13

x23

(1.4)

and

t$1=
x12x23&x13

x12

, t$2=x12 , t$3=
x13

x12

. (1.5)

Our general solution of Problem 1.1 will require two ingredients. The
first is the following combinatorial construction. Let h=(h1 , ..., hm) be a
reduced word for w0 . For each entry hk of h, define the set L/[1, ..., r+1]
and two integers i and j by

L=shm } } } shk+1
([1, ..., hk&1])

i=shm } } } shk+1
(hk) (1.6)

j=shm } } } shk+1
(hk+1)

For example, for h=213231 and k=3, we obtain (i, j)=(1, 3) and
L=[2, 4].

As k ranges from 1 to m, the pair (i, j) given by formulas (1.6) ranges
over the m pairs of integers (i, j) satisfying 1�i< j�r+1, each of these
pairs appearing exactly once. This is a special case of a result in [5,
VI.1.6], if one identifies such pairs (i, j) with the positive roots of type Ar .

Another ingredient of our solution of Problem 1.1 is a certain birational
transformation of the group N which is defined as follows. For a matrix g,
let [ g]+ denote the last factor u in the Gaussian LDU-decomposition
g=vT } d } u where u # N, v # N, and d is diagonal. (Such decomposition
exists and is unique for a sufficiently generic g # GLr+1 .) The matrix entries
of [ g]+ are rational functions of g ; explicit formulas can be written in
terms of the minors of g. The following linear-algebraic fact is not hard to
prove.

1.3. Lemma. The map y [ x=[w0yT]+ is a birational automorphism of
N. (Here w0 is identified with the corresponding permutation matrix.) The
inverse birational automorphism x [ y is given by

y=w&1
0 [xw&1

0 ]T
+ w0 .
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For example, in the case r=2, the birational automorphism x [ y is
given by

x=\
1
0
0

x12

1
0

x13

x23

1 +[\
1

x23

x12x23&x13

1
x13+= y.

0 1
x12

x13

0 0 1

In what follows, [i, j] will stand for [a # Z: i�a� j]. For a subset
J/[1, r+1] and a matrix g # GLr+1 , let 2J (g) denote the minor of g that
occupies several first rows and whose column set is J.

We are now in a position to present a solution to Problem 1.1
(cf. Theorem 3.1.1).

1.4. Theorem. For x # N, define the matrix y as in Lemma 1.3. Then the
coefficients tk=th

k in the factorization (1.1) of x are given by

th
k=

2L( y) 2L _ [i, j]( y)
2L _ [i]( y) 2L _ [ j]( y)

(1.7)

where L, i, and j are defined by (1.6).

Formula (1.7) is a particular case of what we call the ``Chamber Ansatz.''
This terminology comes from the pseudo-line arrangement that naturally
corresponds to h. Instead of defining this arrangement formally (which is
done in Section 2.3), we give a self-explanatory example for the reduced
word 213231��see Fig. 1. To every chamber of our arrangement (there are

Fig. 1. Pseudo-line arrangement and chamber sets.
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( r+2
2 )+1 such chambers), we associate the set of labels of the pseudo-lines

that pass below this chamber. These chamber sets are shown in the figure.
In this geometric language, the indices i and j in (1.6) are the labels of

the pseudo-lines which intersect at the k th crossing, counting from the left.
The four sets L, L _ [i], L _ [ j], and L _ [i, j] participating in (1.7) are
exactly the chamber sets associated with the four chambers surrounding
this crossing; see Fig. 2.

The minors of y that participate in (1.7) are rational functions of x # N.
In the next theorem, we express each coefficient tk as a ratio of products
of irreducible polynomials in the matrix entries xij .

For a matrix x # N, define

Za(x)=2[a+1, r+1](x), a=1, ..., r (1.8)

and

TJ (x)=2J ( y) `
a � J, a+1 # J

Za(x), J/[1, r+1]. (1.9)

1.5. Theorem. The coefficients tk=th
k in the factorization (1.1) of a

matrix x # N are given by the following version of the Chamber Ansatz;

th
k=Zi (x)$i+1, j

TL(x) TL _ [i, j](x)
TL _ [i](x) TL _ [ j](x)

, (1.10)

where, as before, L, i, and j are given by (1.6), and $i+1, j is the Kronecker
symbol. All factors Za and TJ are irreducible polynomials in the matrix
entries xij .

This theorem is proved in Proposition 3.6.4 (see also (2.9.8)). In Section 3.3
we provide formulas which express the TJ directly as polynomials in the xij .

The last theorem has the following immediate consequences.

Fig. 2. Chamber sets at the intersection of pseudo-lines i and j.
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1.6. Corollary. 1. Regardless of the value of r, every rational func-
tion th

k has at most three irreducible factors in the numerator and at most two
in the denominator.

2. For a given h, there are exactly m=( r+1
2 ) polynomials in the matrix

entries xij that appear as irreducible factors for th
1 , ..., th

m .

3. The total number of irreducible factors for all th
k (with both h and

k varying) is equal to 2r+1&r&2.

For example, when r=2, the 23&2&2=4 irreducible factors partici-
pating in (1.4)�(1.5) are:

Z1(x)=2[2, 3](x)=x12x23&x13 , Z2(x)=x13 ,

T[1, 3](x)=x12 , T2(x)=x23 .

In accordance with statement 2 above, each of (1.4) and (1.5) involves
three of these four polynomials.

Theorems 1.4, 1.5 have applications in the theory of totally positive
matrices. Recall that a matrix is totally positive if all its minors are positive
real numbers. These matrices play an important role in different ares of
mathematics, from differential equations to combinatorics (see, e.g., [1, 6]).
For a matrix x # N, we modify the definition of total positivity by saying
that x is totally positive with respect to N if every minor that does not iden-
tically vanish on N has a positive value for x. We denote by N>0 /N the
variety of all matrices in N that are totally positive with respect to N.

The following result is presented in [30] as a corollary of the proof
of A. Whitney's reduction theorem [35].

1.7. Proposition. For any reduced word h for w0 , the birational iso-
morphism xh: Cm � N defined by (1.1) restricts to a bijection Rm

>0 � N>0

between the set of m-tuples of positive real numbers and the variety of totally
positive unipotent upper-triangular matrices.

Using this proposition and Theorems 1.4 and 1.5, we obtain the following
set of criteria for total positivity (cf. Theorem 3.2.1 and Proposition 3.3.3).

1.8. Theorem. Let h be a reduced word for w0 . Then, for a matrix x # N,
the following conditions are equivalent:

(1) x is totally positive (with respect to N);

(2) 2J (x)>0 for all chamber sets J of h;

(3) TJ (x)>0 and Za(x)>0 for all chamber sets J of h and all a # [1, r].
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The total number of non-constant polynomials appearing in each of the
conditions (2) and (3) is equal to m. Thus the positivity of all minors of x
is equivalent to positivity of certain m=( r+1

2 ) irreducible polynomials.
The study of general (not necessarily upper-triangular) totally positive

matrices can be reduced to the study of N>0 , in view of the following well-
known result [11]: a square matrix g of order r+1 is totally positive if and
only if it is (uniquely) represented in the form g=vT } d } u where u, v # N>0

and d is a diagonal matrix with positive diagonal entries. In other words,
a matrix is totally positive if and only if all three factors in its Gaussian (or
LDU-) factorization are totally positive. Theorem 1.8 now implies the
following total positivity criterion.

1.9. Corollary. Let h and h$ be reduced words for w0 . An (r+1)_
(r+1)-matrix g is totally positive if and only if 2J (g)>0 and 2J$(gT)>0
for all chamber sets J of h and all chamber sets J$ of h$.

In the special case h=h$=(1, 2, 1, ..., r, r&1, ..., 1), we obtain the classi-
cal Fekete criterion [13]. Namely, a square matrix g of order r+1 is
totally positive if and only if the following (r+1)2 minors of g are positive:
all minors occupying several initial rows and several consecutive columns,
and all minors occupying several initial columns and several consecutive
rows.

We now turn to the discussion of Problem I. Let U+ be the q-deforma-
tion of the universal enveloping algebra of the Lie algebra of N, and let B
be the canonical basis in U+ (see [28]). In this paper, we will only study
the combinatorial properties of B. The main problem and its solution will
be formulated in a form that will not assume any familiarity with quantum
groups on the part of the reader.

According to Lusztig [29, 30], there is a total similarity between the
parametrizations of N>0 given in Proposition 1.7, and certain parametriza-
tions of the canonical basis B by m-tuples of nonnegative integers. For
every reduced word h for w0 , there is a natural bijective parametrization
th: B � Zm

+. (It will soon become clear why we use the same notation th for
this bijection and the bijection N>0 � Rm

>0 discussed above.)
The key role in the combinatorial understanding of the canonical basis

B is played by the transition maps Rh$
h : Zm

+ � Zm
+ defined by

Rh$
h =th$ b (th)&1 (1.11)

for any pair h and h$ of reduced words of w0 . Lusztig [29] described Rh$
h

as a composition of some simple piecewise-linear transformations. To
explain his description, let us first recall [5, 22] that any two reduced
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words of the same element can be obtained from each other by a sequence
of elementary moves of the following two types:

2-move. Replace two consecutive entries ij by ji provided |i& j |�2.

3-move. Replace three consecutive entries iji by jij if |i& j |=1.

If h$ differs from h by a 2-move applied to the entries hk and hk+1 , then
t$=Rh$

h (t) is obtained from t=(t1 , ..., tm) by switching the components tk

and tk+1. If h$ is obtained from h by a 3-move applied to the entries hk&1 ,
hk , and hk+1 , then t$ is given by

t$k&1=tk+tk+1&min(tk&1 , tk+1),

t$k=min(tk&1 , tk+1), (1.12)

t$k+1=tk+tk&1&min(tk&1 , tk+1).

An arbitrary transition map Rh$
h can be computed as a composition of

transformations corresponding to elementary moves. In general, as many
as ( r+1

3 ) such steps may be needed, and the computations become very
involved (see, e.g., [9]). This leads us to the following more precise version
of Problem I.

1.10. Problem. For arbitrary h and h$, find a closed formula for the
transition map Rh$

h that does not involve the iteration process.

As observed in [30], Problem 1.10 has a natural linear-algebraic coun-
terpart. For any reduced word, consider the bijection th: N>0 � Rm

>0.
These bijections are related to each other via transition maps Rh$

h : Rm
>0 �

Rm
>0 defined by Rh$

h =th$ b (th)&1, in complete analogy with (1.11). To com-
pute transition maps in this setting, we can use the same approach as
before, namely, iterate elementary transformations which correspond to
2- and 3-moves:

(2-move) if h$ differs from h by a 2-move that switches the k th and
k+1st entries, then t$=Rh$

h (t) is obtained from t # Rm
>0 by simply switching

the corresponding components:

t$k=tk+1 , t$k+1=tk ; (1.13)

(3-move) if h$ is obtained from h by a 3-move applied at positions
k&1, k, and k+1, then t$=Rh$

h (t) is given by

t$k&1=
tktk+1

tk&1+tk+1

, t$k=tk&1+tk+1, t$k+1=
tktk&1

tk&1+tk+1

. (1.14)

The relation (1.13) follows from the fact that ei and ej commute for
|i& j |�2, and (1.14) is a consequence of the matrix identity (1.3).
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The formulas (1.12) and (1.14) which describe elementary transition
maps in two different settings, are strikingly similar. In fact, (1.12) becomes
identical to (1.14) if one uses an exotic semifield structure on Z, where the
usual addition plays the role of multiplication, and taking the minimum
plays the role of addition. These operations have the usual associativity,
commutativity and distributivity properties, the latter being a rephrasing of
the identity

a+min(b, c)=min(a+b, a+c).

In this semifield, one can divide but not subtract, since addition is idempo-
tent: min(a, a)=a.

The semifield (Z, min, +) is known under various names. We will use
the term tropical semifield, which we learned from M.-P. Schu� tzenberger.
A detailed study of its algebraic properties, along with numerous applica-
tions, can be found in [3]. (We thank D. Krob for providing this
reference.)

The piecewise-linear transition maps Rh$
h : Zm

+ � Zm
+ can now be

expressed as rational mappings in the sense of the tropical semifield.
Moreover, the parallelism described above shows that these maps can be
given by exactly the same formulas as the transition maps for the
parametrization of N>0.

It is then natural to consider a common generalization of the two set-
tings by defining transition maps over an arbitrary ground semifield P. (See
Section 2.1 for exact axiomatic description of P.) The main object of study
is the set Lr(P) of vectors (th

k) whose components are elements of P which
satisfy the 2-move and 3-move relations (1.13)�(1.14); these components are
double-indexed by reduced words h for w0 and integers k=1, ..., m. We call
Lr(P) the Lusztig variety. The previous discussion shows that, canonically,

Lr(Z+)=B,

where B is the canonical basis in U+ , and Z+ is equipped with the tropical
semiring structure. On the other hand,

Lr(R>0)=N>0 ,

where R>0 is the semifield of positive real numbers with the usual opera-
tions.

Problem 1.10 can be formulated for a general Lusztig variety Lr(P),
where it amounts to finding explicit formulas (in terms of the semifield
operations) for the transition maps

(th
1 , ..., th

m) @w�
Rh

h$

(th$
1 , ..., th$

m).
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Such formulas can be written in a universal form, i.e., in a form independent
of the choice of P. Moreover, it is easy to show (cf. Proposition 2.1.7) that
subtraction-free formulas for the components of Rh$

h in the ``geometric'' case
P=R>0 will necessarily be universal. Thus it is enough to solve Problem
1.10 in the special case of the Lusztig variety Lr(R>0)=N>0 , provided the
answer is expressed in a subtraction-free form.

Our approach to the last problem is as follows: we compute the transition
maps

Rh$
h : Rm

>0 � Rm
>0

directly from the definition Rh$
h =th$ b (th)&1=th$ b xh, using our solution to

Problem 1.1. Note that

th$: N>0 � Rm
>0

can be obtained from (1.7) or (1.10), while the map

xh: Rm
>0 � N>0

is explicitly given by (1.1). Thus the only ingredients needed to complete
the solution of Problem 1.10 are the subtraction-free formulas expressing
the rational functions 2J( y) (or the polynomials Za(x) and TJ (x)) in terms
of the variables th

1 , ..., th
m . Such formulas do exist, as the following result

shows.

1.11. Theorem. Let h be a reduced word for w0 , and let the matrix x be
defined by the factorization (1.1). Let y be related to x as in Lemma 1.3.
Then, for any a # [1, r] and any J/[1, r+1],

(1) 2J ( y) is a Laurent polynomial in the variables tk , with nonnegative
integer coefficients;

(2) Za(x) is a monomial in the tk ;

(3) TJ (x) is a polynomial in the tk with nonnegative integer coefficients.

In view of (1.9), statement (1) above follows immediately from (2) and
(3). The monomial in (2) is given by the formula

Za(x)= `
k: i�a< j

tk (1.15)

where i and j are defined as in (1.6); see (2.9.9). Statement (3) is proved in
Theorem 3.7.4.
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Let T h
J (t1 , ..., tm) be the polynomials in (3), i.e.,

T h
J (t1 , ..., tm)=TJ ((1+t1eh1

) } } } (1+tm ehm)). (1.16)

In view of (1.10) and (1.15), in order to obtain a general formula for the
transition maps Rh$

h , we only need subtraction-free formulas for the polyno-
mials T h

J . Finding such a formula for general J and h remains an open
problem.

To bypass this problem, we observe that a computation of a particular
map Rh$

h via (1.10) only involves the polynomials T h
J , where J is a chamber

set for h$. We will now solve Problem 1.10 as follows:

(1) express a general transition map Rh$
h as a composition

Rh$
h =Rh$

h0 b Rh0

h , (1.17)

where h0 is the lexicographically minimal reduced word given by

h0=(1, 2, 1, 3, 2, 1, ..., r, r&1, ..., 1); (1.18)

(2) compute Rh0

h , by obtaining a subtraction-free formula for T h
J , J

being a chamber set for h0, and h arbitrary (see Proposition 2.10.2 and
Theorem 2.4.6);

(3) compute Rh$
h0 , by obtaining a subtraction-free formula for T h0

J , for
an arbitrary J (see Theorem 2.10.3 and Theorem 2.8.2).

Formula (1.17) replaces multiple iterations of transformations (1.13)�
(1.14) by a two-step computation that uses the minimal reduced word h0

as a ``hub.''
In the case related to the canonical basis, the semifield operations are

``tropical,'' and each polynomial T h
J becomes the minimum of certain linear

forms in the variables t1 , ..., tm . Then Lusztig's piecewise-linear transition
maps Rh$

h : Zm
+ � Zm

+ are expressed in terms of these minima.
As an application of our formulas, we obtain a new proof and general-

ization of piecewise-linear minimization formulas for quivers of type A
given in [23, 24].

A key role in our proofs of the above results is played by the following
observation (cf. Proposition 2.5.1).

1.12. Theorem. Let [MJ : J/[1, r+1]] be a family of elements of a
semifield P. Let the elements th

k be defined by the Chamber Ansatz substitution

th
k=

MLML _ [i, j]

ML _ [i] ML _ [ j]
(1.19)
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where L, i, and j are related to k via (1.6). Then the point t=(th
k) belongs

to the Lusztig variety Lr(P) if and only if the MJ satisfy

ML _ [i, k] ML _ [ j]=ML _ [i, j] ML _ [k]+ML _ [ j, k]ML _ [i] (1.20)

whenever i< j<k and L & [i, j, k]=,.

In other words, the Chamber Ansatz (1.19) translates the 2- and 3-move
relations (1.13)�(1.14) into the 3-term relations (1.20). Relations (1.20) can
be viewed as a semifield analogue of some of the classical Plu� cker relations.

We then refine Theorem 1.12 by giving the following alternative descrip-
tion of the Lusztig variety (cf. Theorem 2.7.1).

1.13. Theorem. There is a natural bijection between the Lusztig variety
Lr(P) and the variety Mr(P) of vectors (MJ) satisfying the 3-term relations
(1.20), together with the normalization condition

M[1, b]=1, b=0, 1, ..., r+1. (1.21)

In one direction, the bijection Mr(P) � Lr(P) is given by the Chamber
Ansatz (1.19). The inverse bijection is given by

MJ= `
k: i � J, j # J

(th
k)&1 (1.22)

whenever J is a chamber set for h; in the last formula, the product is over all
k such that i � J and j # J, for i and j defined by (1.6).

We conclude this long introduction by describing the structure of the
paper. In Chapter 2, we present a general study of the Lusztig variety
Lr(P) over an arbitrary semifield P. In addition to the results stated above,
we would like to mention two combinatorial constructions that play an
important role in our theory. In Section 2.4, we construct an embedding of
Lr(P) into the nil�Temperley�Lieb algebra [14, 17]. (Although the map xh

can be defined for any P, it is not injective in general.) In Section 2.6, the
solutions of the 3-term relations (1.20) are given in terms of vertex-disjoint
path families in acyclic planar graphs, in the spirit of [27, 19]. Our for-
mulas for the transition maps Rh$

h0 and Rh0

h are also written in the language
of vertex-disjoint paths.

Chapter 3 is devoted to the ``geometric'' case P=R>0. The main results
of this chapter have already been discussed. In contrast to the relatively
elementary tools used in the rest of the paper, the proof of some properties
of the polynomials TJ , such as statement (3) of Theorem 1.11, requires
techniques from representation theory of quantum groups (see Sections
3.5�3.7).
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Chapter 4 concentrates on the ``tropical'' case P=Z+ . In particular, we
show that our results imply piecewise-linear minimization formulas [24,
23] for the multi-segment duality and more general transformations related
to representations of quivers of type A. Combinatorics of quivers proves to
be related to two interesting special classes of reduced words and corre-
sponding arrangements (see Sections 4.3�4.4).

In Chapter 5, we extend some of our results to the situation where the
maximal permutation w0 is replaced by an arbitrary permutation w # Sr+1.
We mostly deal with the case P=R>0. In this case, the natural generaliza-
tion Lw(R>0) of the Lusztig variety has the following realization inside the
group N (see [30]). It can be identified with the intersection N w

>0 of the
subset N�0 /N of totally nonnegative matrices with the Bruhat cell
B& wB& where B& is the Borel subgroup of lower-triangular matrices. Our
main contribution is an explicit description of the set N w

>0 that only uses
l(w)=dim N w

>0 algebraic inequalities (see Section 5.4). This generalizes the
total positivity criteria of Theorem 1.8. An important role in our descrip-
tion of N w

>0 is played by the change of variables x [ y, which extends the
one in Lemma 1.3. Here y has the following geometric meaning: its matrix
elements form the natural system of affine coordinates in the Schubert cell
corresponding to w.

The connections between the 3-move relations (1.14) and the Yang�
Baxter equation are discussed in the Appendix.

2. LUSZTIG VARIETY AND CHAMBER ANSATZ

Throughout the paper, we use the following notation. For i and j
integers, [i, j] denotes the set [a # Z: i�a� j]. The set of all reduced
words for an element w # Sr+1 is denoted by R(w). Recall that a reduced
word for w is a sequence of indices h=(h1 , ..., hl) such that l=l(w) is the
number of inversions of w, and sh1

} } } shl=w where sh denotes a simple
transposition (h, h+1).

2.1. Semifields and Subtraction-Free Rational Expressions

In what follows, by a semifield we will mean a set K endowed with two
operations, addition and multiplication, which have the following properties:

(1) addition in K is commutative and associative;

(2) multiplication makes K an abelian group;

(3) distributivity: (a+b) c=ac+bc for a, b, c # K.
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Note that, in view of (2), a semifield in our sense does not contain zero.
This terminology is not quite standard: what we call a semifield would be
called in [20] the group of units of a zerosumfree semifield. In our
calculus, the elements of K will play the role of scalars.

A subset P/K is called a semiring if it is closed under the operations of
addition and multiplication (but not necessarily division). Most of the
semirings we consider also satisfy the following additional condition:

if a, b # P then
a

a+b
# P (2.1.1)

(cf. [29, 42.2.2]). In particular, the ambient semifield K is itself a semiring
satisfying (2.1.1).

The following two examples will be of most importance to us.

2.1.1. Example. Let K=R>0 be the set of positive real numbers, with
the usual operations.

2.1.2. Example (Tropical Semifield and Semiring). The tropical semi-
field is K=Z, with multiplication and addition given by

a x b=a+b, a�b=min(a, b). (2.1.2)

These operations make K a semifield whose unit is 0 # Z. The distributivity
property is a rephrasing of the identity

min(a, b)+c=min(a+c, b+c).

In this example, addition � is idempotent: a�a=a, so K cannot be
embedded into a field.

The tropical semiring is the set of nonnegative integers P=Z+/K, with
addition � and multiplication x. It is indeed a semiring, and (2.1.1) is
satisfied.

2.1.3. Example. Let K consist of rational functions over R whose
values on a given subset of R are positive. The operations are usual.

2.1.4. Example [29, 42.2.2(c)]. Let K be the set of Laurent series in
one variable over R whose leading coefficient is positive.

In Examples 2.1.1, 2.1.3, and 2.1.4, R can be replaced by an arbitrary
totally ordered field.
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2.1.5. Example (Universal Semifield). Consider the field Q(z1 , ..., zm)
of rational functions in the variables z1 , ..., zm with coefficients in Q. Let
Q>0(z1 , ..., zm) denote the minimal sub-semifield of Q(z1 , ..., zm) that con-
tains z1 , ..., zm . The elements of Q>0(z1 , ..., zm) are subtraction-free rational
expressions in z1 , ..., zm . Equivalently, Q>0(z1 , ..., zm) consists of all
rational functions which can be represented as a ratio of two polynomials
in z1 , ..., zm with nonnegative integer coefficients. For example, x2&x+1 #
Q>0(x) because x2&x+1=(x3+1)�(x+1).

The semifield of the last example is universal in the following sense.

2.1.6. Lemma. For any semifield K and any elements t1 , ..., tm # K, there
is a unique homomorphism of semifields Q>0(z1 , ..., zm) � K such that
z1 [ t1 , ..., zm [ tm .

Following the common abuse of notation, we will denote by f (t1 , ..., tm) # K
the image of a rational function f # Q>0(z1 , ..., zm) under the homo-
morphism of Lemma 2.1.6.

Proof of Lemma 2.1.6. The uniqueness of a homomorphism in question
is obvious. To prove the existence, we only need to show that if P1 �Q1=
P2 �Q2 where P1 , P2 , Q1 , and Q2 are polynomials in z1 , ..., zm with non-
negative integer coefficients, then

P1(t1 , ..., tm)�(t1 , ..., tm)=P2(t1 , ..., tm)�Q2(t1 , ..., tm). (2.1.3)

The equality P1 �Q1=P2 �Q2 means that, in the expansions of P1Q2 and
P2Q1 , each monomial in z1 , ..., zm appears with the same coefficient. This
implies that

P1(t1 , ..., tm) Q2(t1 , ..., tm)=P2(t1 , ..., tm) Q1(t1 , ..., tm).

Dividing both sides by Q1(t1 , ..., tm) Q2(t1 , ..., tm) (a legitimate operation in
a semifield K), we obtain (2.1.3), as desired. K

For a semifield K, let Map(Km, K) denote the set of all maps Km � K.
This set is a semifield itself, under pointwise addition and multiplication.
The homomorphism of Lemma 2.1.6 gives rise to a semifield homomor-
phism Q>0(z1 , ..., zm) � Map(K m, K), which we will denote by f [ fK . For
f a rational expression, fK is simply the function (t1 , ..., tm) [ f (t1 , ..., tm).
For instance, if f =x2&xy+ y2 # Q>0(x, y) and K=Z is the tropical semi-
field, then fK : Z2 � Z is given by fK (n, m)=min(3n, 3m)&min(n, m)=
2 min(n, m). Note that the right-hand side is also gK for g=(x+ y)2, which
should be no surprise, since, indeed, in the tropical semifield, (x3+ y3)�
(x+ y)=(x+ y)2.

64 BERENSTEIN, FOMIN, AND ZELEVINSKY



File: 607J I56717 . By:BV . Date:26:08:96 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 2906 Signs: 1832 . Length: 45 pic 0 pts, 190 mm

The following simple observation will play an important role in the
sequel.

2.1.7. Proposition. Let f, f $ # Q>0(z1 , ..., zm) be two subtraction-free
rational expressions. Then the following are equivalent:

(i) f = f $;

(ii) fR>0
= f $R>0

;

(iii) fK= f $K for any semifield K.

Proof. The implications (i) O (iii) O (ii) are obvious, and (ii) O (i)
simply states that a rational function which vanishes at all tuples of
positive real numbers, is zero. K

2.2. Lusztig Variety

2.2.1. Definition. Let K be a semifield, and P/K a semiring satisfying
(2.1.1). We define the Lusztig variety L=Lr(P) as follows. An element t of
Lr(P) is, by definition, a tuple

t=(th)h # R(w0)

where each th=(th
1 , ..., th

m) is a ``vector'' in Pm, and these vectors satisfy the
2-move and 3-move relations (1.13)�(1.14).

For example, if r=2, then

L2(P)={t=\t121

t212+=\(t1 , t2 , t3)
(t$1 , t$2 , t$3)+: t$1=

t2 t3

t1+t3

, t$2=t1+t3 , t$3=
t2 t1

t1+t3=
where t1 , t2 , t3 , t$1 , t$2 , t$3 are elements of P. Note that a point t=(th) of
the Lusztig variety is uniquely defined by a single vector th # Pm where h
is an arbitrary reduced word for w0 . We will soon show (see Theorem 2.2.6
below) that, in fact, th can be chosen arbitrarily.

2.2.2. Example. Let P=R>0 (see Example 2.1.1). Following [30], we
will show that, in this case, the Lusztig variety is in a natural bijection with
the set of totally positive unitriangular matrices. More precisely, let
N=Nr(R) be the group of real unipotent upper-triangular matrices of
order r+1. A matrix x=(xij) # N is called totally positive if every minor
which does not identically vanish on N is positive when evaluated at x.

Let us now restate, using the terminology just introduced, the classical
results on total positivity that have been already discussed in the introduc-
tion. As before, let ei , for i=1, ..., r, denote the matrix whose (i, i+1)-entry
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is 1 and all other entries are 0. The following theorem is a restatement of
Proposition 1.7.

2.2.3. Theorem. For an element t=(th
k) # Lr(R>0), the product

x(t)=(1+th
1eh1

) } } } (1+th
mehm) (2.2.1)

does not depend on the choice of a reduced word h=(h1 , ..., hm) # R(w0).
The map t [ x(t) is a bijection between the Lusztig variety Lr(R>0) and the
variety N>0 of totally positive matrices in N. Furthermore: for a fixed h, the
map

t=(t1 , ..., tm) [ xh(t)=(1+t1 eh1
) } } } (1+tmehm) (2.2.2)

is a bijection from Rm
>0 to N>0.

This result essentially appears in [30]. The fact that the map t [ x(t) is
well defined is justified by the way formulas (1.13)�(1.14) were originally
obtained. Total positivity of the matrix x(t) can be proved by a direct com-
binatorial argument (see Section 2.4). To prove bijectivity, it suffices to give
explicit formulas for the inverse map xh(t) [ t in the special case h=h0

(see (1.18)). Such formulas can indeed be obtained, in terms of the minors
of the matrix x=xh(t); see (2.4.15).

2.2.4. Remark. Theorem 2.2.3 can be used for parametrizing the variety
of all totally positive matrices in GLr+1 It is well known [11] that a matrix
g # GLr+1(R) is totally positive if and only if g has a totally positive
Gaussian decomposition, that is, iff g=vT du where u, v # N>0 and d is a
diagonal matrix with positive diagonal entries. Applying Theorem 2.2.3 to
u and v, we obtain a family of parametrizations of our totally positive
matrix g by 2m+r+1=(r+1)2 positive numbers.

2.2.5. Example. Let P=Z+ be the tropical semiring from Example 2.1.2.
According to the Introduction, the Lusztig variety Lr(P) can be identified
with the canonical basis B in Uq(Lie(N)) (see [28]).

We now return to the general case of an arbitrary ground semiring P, as
described in Definition 2.2.1.

2.2.6. Theorem. For any h # R(w0), the projection t [ t h is a bijection
between the Lusztig variety L and Pm.

Proof. We need to show the commutativity of the diagram whose
objects are copies of Pm labelled by reduced words h # R(w0), and the
morphisms are elementary transition maps given by (1.13)�(1.14), for all
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possible 2- and 3-moves. In particular, the composition of elementary
transition maps along any oriented cycle of this diagram needs to be the
identity map.

In the notation of Section 2.1, this amounts to verifying a collection of
identities of the form fK= f $K where f and f $ are some subtraction-free
rational expressions. By Proposition 2.1.7, it is sufficient to consider the
special case K=R>0. In this case, according to Theorem 2.2.3, any com-
position of morphisms in our diagram that goes from h to h$ is equal to
(xh$)&1 b xh, and commutativity follows. K

Theorem 2.2.6 implies that, for any two reduced words h and h$, there is
a well-defined bijection Rh$

h : Pm [ Pm given by

Rh$
h (t h)=th$ (2.2.3)

where th and t h$ are the h- and h$-components of the same element of the
Lusztig variety. Bijections Rh$

h are called transition maps. They are one of
the main objects of study in this paper. Note that, according to the proof
of Theorem 2.2.6, the components of any transition map are given by sub-
traction-free rational expressions which do not depend on the choice of a
ground semiring P.

2.3. Pseudo-line Arrangements

In this section we will describe a geometric representation of reduced
words by pseudo-line arrangements on the plane. This representation has
now become a folklore in low dimensional topology, the study of the Yang�
Baxter equation, and geometric combinatorics. See [21, 36] and references
therein.

Fix a vertical strip on the plane. By a pseudo-line arrangement (see
Fig. 3) we will mean a configuration of r+1 pseudo-lines Line1 , ..., Liner+1

in the strip with the following three properties:

(i) each vertical line in the strip intersects each of the pseudo-lines
at exactly one point;

(ii) every two pseudo-lines cross each other exactly once within the
strip and do not have other meeting points;

(iii) the configuration is generic in the following sense: no three lines
meet at a point; no two crossing points lie on the same vertical line.

We will label the pseudo-lines so that their right endpoints are numbered
1 through r+1 bottom-up; thus the left endpoints will be numbered top to
bottom. One can always draw such an arrangement as shown in Fig. 3, by
combining segments taken from a collection of r+1 horizontal lines with
X-shaped switches between them. This produces a wiring diagram of a
reduced word; cf. [21, p. 111].
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Fig. 3. Pseudo-line arrangement for h=213231.

Such arrangements (modulo natural isotopy equivalence) are in a natural
bijection with reduced words of w0 . Let A be an arrangement. By the
property (ii) above, the total number of crossing points in A is m=( r+1

2 );
let us order them from left to right. For k=1, ..., m, let hk&1 be the num-
ber of pseudo-lines passing strictly below the kth crossing point. Then h=
(h1 , ..., hm) is the sequence of levels where the X-switches are located. These
switches can be viewed as adjacent transpositions, and thus h is a reduced
word for w0 (cf. Fig. 3). We call h the reduced word associated with A and
denote A=Arr(h).

Let us label the crossing point of pseudo-lines Linei and Line j , with i< j,
by the pair (i, j). The left-to-right ordering of the crossing points in A
results in a total ordering on the set of pairs

6=6r=[(i, j): 1�i< j�r+1]. (2.3.1)

Note that such pairs naturally correspond to positive roots of type Ar . The
ordering of positive roots thus obtained is known as the normal (or total
reflection) ordering (see [5, VI.1.6]) associated to the corresponding
reduced word. By traversing our arrangement from right to left, one can
easily see that, in the interval between the k th and the (k+1)'st crossing
point, the jth pseudo-line from the bottom is Lineshm } } } shk+1( j) . Hence the
kth positive root, with respect to this ordering, is given by

%k=shm } } } shk+1
(:hk), (2.3.2)

where :1 , ..., :r are the simple roots of type Ar , in the standard notation.
We denote by n=n(h) the total ordering of 6r that corresponds to a

reduced word h. The following characterization of such orderings is well
known (see, e.g., [25] and references therein).

68 BERENSTEIN, FOMIN, AND ZELEVINSKY



File: 607J I56721 . By:XX . Date:13:08:96 . Time:08:54 LOP8M. V8.0. Page 01:01
Codes: 2521 Signs: 1747 . Length: 45 pic 0 pts, 190 mm

2.3.1. Proposition. The correspondence h [ n(h) is a bijection between
the set R(w0) of reduced words for w0 and the set of total orderings of 6r

which have the following betweenness property: for any three indices i, j,
k # [1, r+1] with i< j<k, the pair (i, k) lies between (i, j) and ( j, k).

One can translate the 2- and 3-moves on reduced words into the
language of normal orderings, where they become the following:

2-move. In a normal ordering n, interchange two consecutive (with
respect to n) entries (i, j) and (k, l) provided all of i, j, k, l are distinct.

3-move. Replace three consecutive entries (i, j) (i, k) ( j, k) such that
i< j<k by ( j, k) (i, k) ( j, k) (or vice versa).

For example, for h=213231, the normal ordering is n(h)=23 24 13 14
34 12 (cf. Fig. 3). There are two possible 2-moves, one of them swapping 24
and 13, another one swapping 34 and 12. There is only one possible 3-
move, transforming n(h) into 23 24 34 14 13 12.

Passing from reduced words to normal orderings allows us to simplify
the definition of the Lusztig variety. The components th

k of a vector t h

representing an element t # Lr(P) are naturally associated with the crossing
points in the arrangement Arr(h). This makes it natural to change the
notation for the variables th

k as follows. Suppose a pair (i, j) appears in
position k in the ordering n=n(h). Then we write tn

ij instead of th
k . For

instance, for h=213231, the vector th=(t1 , ..., t6) becomes t n=(t23 , t24 ,
t13 , t14 , t34 , t12), in accordance with Fig. 4.

In this new notation, the defining relations (1.13) and (1.14) take the
following form:

(2-move relations) if n$ differs from n by a 2-move, then
tn$=t n;

(3-move relations) if n$ is obtained from n by a 3-move that

Fig. 4. Chamber sets for h=213231.
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transforms consecutive entries (i, j), (i, k), and ( j, k) into
( j, k), (i, k), and (i, j) (or vice versa), then t$=tn$ is obtained
from t=tn by

t$ij=
tij tik

tij+tjk
, t$ik=tij+tjk , t$jk=

tik tjk

tij+tjk
. (2.3.3)

2.3.2. Remark. The modified definition has an important advantage
that the 2-moves do not affect the vector tn. This means that t n only
depends on the commutation class of the corresponding reduced decom-
position h, i.e., on the equivalence class of h under 2-moves.

The 3-move relations can be restated in ``topological'' terms, since t n only
depends on the isotopy class of the pseudo-line arrangement Arr(n)=
Arr(h). (Here we relax the genericity condition, allowing two or more
crossing points to lie on the same vertical line; we then consider isotopies
within this class of pseudo-line arrangements.) In this language, a 3-move
n � n$ corresponds to the transformation of (an isotopy class of) a pseudo-
line arrangement shown in Fig. 5.

The relations (2.3.3) can be viewed as certain Yang�Baxter-type rules. We
discuss the connections with the Yang�Baxter equation in the Appendix.

Theorem 2.2.6 can be reformulated as follows: for every normal ordering
n of 6=6r , the projection t [ tn is a bijection between the Lusztig variety
L and the set P6=[(tij): tij # P]. Therefore, for any two normal orderings
n and n$, there is a well-defined transition map Rn$

n : P6 � P6 (cf. (2.2.3)).
Note that if n and n$ belong to the same commutation class then Rn$

n is the
identity map (cf. Remark 2.3.2).

We conclude this section by introducing some important notation. Let
f : L � P be a function on the Lusztig variety. For any reduced word
h # R(w0) (resp. any normal ordering n of 6) we denote by f h: Pm � P
(resp. f n: P6 � P) the function given by f h(t)= f (t) (resp. f n(t)= f (t))
where t is the unique element of L such that th=t (resp. tn=t). To
illustrate this notation, take f (t)=th$

k for some h$ # R(w0) and k=1, ..., m.

Fig. 5. Geometric interpretation of a 3-move.
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Then f h(t)=(Rh$
h (t))k . Similarly, if f (t)=tn$

ij for some normal ordering n$
and some (i, j) # 6, then f n(t)=(Rn$

n (t))ij .

2.4. Minors and the nil�Temperley�Lieb Algebra

In this section we will give a ``concrete realization'' of the Lusztig variety
Lr(P). This will also provide us with a supply of functions on Lr(P), to be
used later in the computation of transition maps.

In the special case P=R>0 , such a realization was already given in
Theorem 2.2.3, namely, in the assertion that the elements of Lr(R>0) are
faithfully represented by the totally positive matrices. However, for a
general Lusztig variety, the same construction fails: although the product
(2.2.1) is well defined for any P, the map t [ x(t) from Lr(P) to the set of
unitriangular matrices with entries in P (cf. (2.2.2)) need not be injective.
In particular, it is not injective in the special case of the tropical semiring.

In order to overcome this difficulty, we are going to generalize the notion
of a minor of the matrix x(t) to the case of an arbitrary underlying semi-
ring. (To be more precise, we will only need the analogues of those minors
that do not identically vanish on the group N/GLr+1(C) of upper-
triangular matrices.) Of course the usual definition of the determinant
involves subtraction, and thus may not be used in a semiring.

Let us first look at the case P=R>0, where defining a minor is not a
problem. For an (r+1)_(r+1)-matrix x, and a pair of subsets I,
J/[1, r+1] of the same size, let 2J

I (x) denote the minor of x, with the
row set I and column set J. It is easy to see that if I=[i1< } } } <ik] and
J=[ j1< } } } < jk], then 2J

I (x) is not identically equal to zero on N if
and only if i1� j1 , ..., ik� jk . Let us call such a pair of subsets (I, J) an
admissible pair. An admissible pair (I, J) is reduced if is< js for s=1, ..., k.
One clearly has 2J

I (x)=2J$
I$(x) for all x # N, where (I$, J$) denotes the

reduced pair obtained by removing the set

[ j: j=is=js for some s=1, ..., k]

from both I and J. Therefore, while studying minors 2J
I as functions on N,

we may always assume that a pair (I, J) is admissible and reduced. With
some abuse of notation, we denote by the same symbol 2J

I the function
t [ 2J

I(x(t)) on the Lusztig variety Lr(R>0).
Our goal now is to define the functions 2J

I : Lr(P) � P for an arbitrary
ground semiring P satisfying the condition (2.1.1). To resolve the diffi-
culties outlined above, we will replace the elementary Jacobi matrices ei in
(2.2.1) by the generators ui of a certain associative algebra. The commuta-
tion relations satisfied by the ui will ensure that the product (2.2.1) is a
well-defined function on Lr(P), that is, it does not depend on the choice of
a reduced word h.
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The informal argument presented in this paragraph will motivate subse-
quent definitions. If we want (2.2.1) to be invariant under the 2-move and
3-move transformations, then we ask for

(1+t1ui)(1+t2 uj)=(1+t2uj)(1+t1ui), |i& j |�2 (2.4.1)

and

(1+t1 ui)(1+t2 uj)(1+t3 ui)

=\1+
t2 t3

t1+t3

uj+ (1+(t1+t3) ui)

_\1+
t1t2

t1+t3

uj+ , |i& j |=1 (2.4.2)

to be satisfied for any t1 , t2 , t3 # P. Equating coefficients of all monomials
in t1 and t2 on both sides of (2.4.1) yields the relation

ui uj=uj ui , |i& j |�2. (2.4.3)

Similarly, multiplying (2.4.2) by (t1+t3)2 and equating coefficients of
monomials in t1 , t2 , t3 on both sides yields the relations

u2
i =0

(2.4.4.)
uiujui=0, |i& j |=1

Thus the product

X(t)=(1+th
1uh1

) } } } (1+th
muhm) (2.4.5)

is a well-defined function on the Lusztig variety Lr(P) if the generators ui

satisfy (2.4.3)�(2.4.4).
The associative algebra defined by (2.4.3)�(2.4.4) is called the nil�Tem-

perley�Lieb algebra and denoted by NTL=NTLr (see [17, 14]). This
algebra has a distinguished monomial linear basis formed by all distinct
(modulo (2.4.3)) nonzero noncommutative monomials in the generators
u1 , ..., ur . The dimension of NTLr is the Catalan number (1�(r+2))( 2r+2

r+1 ).
For example, the monomial basis in NTL2 is formed by 1, u1 , u2 , u1 u2 ,
and u2u1 . For any semiring P, we denote by NTLr(P) the set of formal
linear combinations of the basis monomials in NTLr , with coefficients in
P _ [0]. Since the product of two monomials in the ui is again a monomial
(maybe, equal to 0), the multiplication extends to NTLr(P) without dif-
ficulty. Thus NTLr(P) may be viewed as the nil�Temperley�Lieb algebra
``over P.'' We see that (2.4.5) unambiguously defines a map Lr(P) �
NTLr(P).
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The monomial basis in NTLr can be described in several equivalent ways
(cf. [4, 14]). For our purposes, the following description is the most con-
venient. Consider the vector space of formal linear combinations of subsets
of the set [1, r+1]. Let us represent a generator uj by the shift operator
acting in this space by

uj (J)={J _ [ j]"[ j+1],
0,

if j+1 # J, j � J
otherwise.

(2.4.6)

This is a faithful representation of NTLr . The following proposition was
essentially proved in [4] (using a different language).

2.4.1. Proposition. A monomial u=uj1
} } } ujs in NTLr is non-zero if and

only if u(J)=I for some reduced admissible pair of subsets (I, J). Further-
more, the pair (I, J) is uniquely determined by u, and the correspondence
u [ (I, J) is a bijection between the monomial basis in NTLr and the set of
all reduced admissible pairs (I, J) in [1, r+1].

For a reduced admissible pair (I, J) we will denote by uJ
I the element of

the monomial basis in NTLr that corresponds to (I, J) via Proposition
2.4.1. For example, the monomial basis in NTL2 consists of:

1=u,
, , u1=u[2]

[1] , u2=u[3]
[2] , u1 u2=u[3]

[1] , u2u1=u[23]
[12] .

For an element X # NTLr(P) we denote by 2J
I (X) the coefficient of uJ

I in
the expansion of X with respect to the monomial basis. Thus, every
reduced admissible pair (I, J) gives rise to a function t [ 2J

I (X(t)) on
Lr(P) with values in P _ [0]. With the same abuse of notation as above,
we will write 2J

I (t) instead of 2J
I (X(t)). Let us show that this notation is

consistent with the one introduced above for P=R>0.

2.4.2. Proposition. Let h=(h1 , ..., hl) be any sequence of indices from
[1, r], and let t1 , ..., tl be positive real numbers. Then

2J
I ((1+t1uh1

) } } } (1+tluhl))=2J
I ((1+t1eh1

) } } } (1+tl ehl)) (2.4.7)

for every reduced admissible pair (I, J).

Proof. Unraveling the definitions, we obtain the following explicit
formula valid for an arbitrary ground semiring P:

2J
I ((1+t1uh1

) } } } (1+tluhl))=: ta1
ta2

} } } tas (2.4.8)
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where the sum is over all sequences 1�a1<a2< } } } <as�l such that

uha1
uha2

} } } uhas
(J)=I.

It remains to show that the minor on the right-hand side of (2.4.7) is given
by the same formula. This follows by induction on l from the identity

2J
I (x(1+teh))=2J

I (x)+t 2uh(J)
I (x)

which is easily checked for any square matrix x over an arbitrary com-
mutative ring. K

Now the functions 2J
I : Lr(P) � P _ [0] are defined unambiguously for

any P. Recalling the notation f h from the last paragraph of Section 2.3, we
see that for any h # R(w0), the function (2J

I ) h (t1 , ..., tm) is a sum of distinct
square-free monomials in t1 , ..., tm given by (2.4.8). This readily implies that
(2J

I ) h never vanishes, i.e., it is a function Pm � P. For example, in the case
when r=2 and h=(1, 2, 1), the rule (2.4.8) gives

(2,
,) h=1, (2[2]

[1]) h=t1+t3 , (2[3]
[2]) h=t2 ,

(2[3]
[1]) h=t1 t2 , (2[23]

[12])h=t2 t3 .

These formulas could also be obtained by directly expanding X(t) in the
monomial basis:

X(t)=(1+t1u1)(1+t2u2)(1+t3u1)

=1+(t1+t3) u1+t2 u2+t1 t2u1u2+t2 t3u2u1

=1+(t1+t3) u[2]
[1]+t2 u[3]

[2]+t1 t2u[3]
[1]+t2 t3u[23]

[12] .

Consider then the example of Fig. 3 (that is, h=213231). For r=3, there
are 14 admissible pairs, so we will only write a couple of formulas that can
be obtained from (2.4.8):

2[2, 3]
[1, 2]=t1t2+t1t6+t4 t6 ;

2[2, 4]
[1, 3]=(t2+t6)(t3+t5).

Following the strategy outlined in Section 2.3, we will now pass from a
reduced word h # R(w0) to the corresponding normal ordering n=n(h) of 6,
thus replacing the (2J

I ) h by the polynomials (2J
I ) n in the variables tij . For

example, in the case of h=213231, one has (t1 , t2 , t3 , t4 , t5 , t6)=(t23 , t24 ,
t13 , t14 , t34, t12), and therefore

(2[2, 3]
[1, 2]) n=t23t24+t23 t12+t14 t12 ;

(2.4.9)
(2[2, 4]

[1, 3]) n=(t24+t12)(t13+t34).
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We will now obtain an explicit combinatorial formula for each polynomial
(2J

I ) n. To do so, let us associate with n a certain planar acyclic directed
graph 1(n) which is constructed as follows. Start with the pseudo-line
arrangement Arr(n) described in Section 2.3. This arrangement is formed
by horizontal segments lying on r+1 horizontal lines, and X-shaped switches
between them. To construct the graph 1(n), let us replace each X-switch by
a Z-shaped connector. For example, the arrangement of Fig. 3 will be
transformed into the graph shown in Fig. 6. The vertices of 1(n) are the
endpoints of all segments of the modified arrangement, and the edges are
these segments themselves, oriented left-to-right. The sources (resp. sinks)
of 1(n) are the left (resp. right) endpoints of the horizontal lines. The
sources are denoted by s1 , ..., sr+1 and the sinks by S1 , ..., Sr+1 both sets
being numbered bottom-up.

We then assign the weight w(e) to every edge e of 1(n) as follows: if e
is a slanted edge that replaced the crossing of pseudo-lines Linei and Line j

in the original arrangement Arr(n), then set w(e)=tij . If e is a horizontal
edge, then w(e)=1. Finally, we define the weight w(?) of an oriented path
? to be the product of the weights w(e) for all edges e of ?.

2.4.4. Theorem. For any normal ordering n of 6 and any reduced
admissible pair of subsets (I, J) of size l, the polynomial (2J

I ) n in the
variables tij , (i, j) # 6 is given by

(2J
I ) n (t)= :

?1, ..., ?l

w(?1) } } } w(?l) (2.4.10)

where the sum is over all families of l vertex-disjoint paths [?1 , ..., ?l] in
1(n), each path connecting a source si , i # I, with a sink Sj , j # J.

Fig. 6. Graph 1(n).
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To illustrate this theorem, consider the example of Fig. 6. Let I=[1, 2]
and J=[2, 3] (the corresponding sources and sinks are circled). Then
there are three families of non-intersecting paths which connect I and J,
and the weights of them are, respectively, t23 t24 , t23 t12 , and t14 t12 ,
reproducing (2.4.9).

Proof. Formula (2.4.10) is easily seen to be a reformulation of (2.4.8).
More precisely, let us replace every variable tij in (2.4.10) by the corre-
sponding variable tk as described in Section 2.3. A straightforward
inspection shows that this transforms the summands in (2.4.10) into the
monomials in (2.4.8). K

For any set J/[1, r+1] of size l we shall abbreviate 2J
[1, l] to 2J. The

minors of the form 2J will be called flag minors. They can be regarded as
the analogues of the Plu� cker coordinates on the flag variety and will be of
special importance to us. Among these minors, a special role will be played
by the principal flag minors 2[a+1, r+1], for a=1, ..., r. Theorem 2.4.4
implies the following very simple formula for these minors.

2.4.5. Corollary. For any normal ordering n of 6 and any a=1, ..., r,
the principal flag minors are given by

(2[a+1, r+1]) n= `
i�a< j

tij . (2.4.11)

In particular, the polynomial (2[a+1, r+1]) n does not depend on n.

Proof. We will derive (2.4.11) from (2.4.10) for I=[1, r+1&a],
J=[a+1, r+1], and l=r+1&a. The monomial in (2.4.11) corresponds
to the following family of vertex-disjoint paths in 1(n). Consider the
pseudo-lines Linea+1 , ..., Liner+1 of the arrangement Arr(n). Whenever two
of these pseudo-lines cross each other in Arr(n), let us replace the corre-
sponding X-switch by a pair of horizontal segments connecting the same
points. We then obtain a family [?0

1 , ..., ?0
r+1&a] of vertex-disjoint paths in

1(n) that joins I and J. Its total weight is the product of weights tij which
correspond to intersections of pseudo-lines Linej , j>a, with pseudo-lines
Linei , i�a. This yields the right-hand side of (2.4.11).

It remains to show that [?0
1 , ..., ?0

r+1&a] is the only family of vertex-
disjoint paths in 1(n) that join the sources s1 , ..., sr+1&a with the sinks
Sa+1 , ..., Sr+1 , respectively. Suppose there exists a family of vertex-disjoint
paths [?1 , ..., ?r+1&a] in 1(n) having the same property but different from
[?0

1 , ..., ?0
r+1&a]. Let A be the first point (looking from the left) where a

deviation of ?k from ?0
k occurs, for some k. This implies that immediately

to the right of A, the path ?k is below ?0
k and stays on a pseudo-line of
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Arr(n) that has label i�a. Such pseudo-lines may not intersect pseudo-
lines with larger labels in the southwest-northeast direction. Therefore, in
order for ?k to eventually converge with ?0

k , the former path has to switch,
at some point, to a segment that comes from a pseudo-line with a label
>a. This segment necessarily lies on a path ?0

k$ with k$<k. In order for
such a switch to be possible, the path ?k$ should deviate from ?0

k$

(necessarily in the southern direction). Repeating the same argument again,
we construct an infinite sequence k>k$>k"> } } } , thus arriving at a con-
tradiction that proves our claim. K

We conclude this section by applying Theorem 2.4.4 to the computation
of certain transition maps. Consider the lexicographically minimal reduced
word h0 # R(w0) and the corresponding normal ordering n0=n(h0). They
are given by

h0=(1, 2, 1, 3, 2, 1, ..., r, r&1, ..., 1); (2.4.12)

n0=((r, r+1), (r&1, r+1), (r&1, r), ...,

(1, r+1), (1, r), ..., (1, 2)). (2.4.13)

2.4.6. Theorem. For any normal ordering n of 6, the transition map
from n to n0 is given by

(Rn0

n (t)) ij=
(2[ j, r+1]

[ j&i, r+1&i]) n (t)(2[ j+1, r+1]
[ j+2&i, r+2&i]) n (t)

(2[ j, r+1]
[ j+1&i, r+2&i]) n (t)(2[ j+1, r+1]

[ j+1&i, r+1&i]) n (t)
. (2.4.14)

Note that an explicit combinatorial expression for each minor appearing
on the right-hand side of (2.4.14) is given by (2.4.10).

Proof. Let us recall from Section 2.3 the definition of transition maps
Rn$

n : P6 � P6 and that of functions f n. Then we see that it suffices to prove
(2.4.14) for n=n0, where it takes the form

tij=
(2[ j, r+1]

[ j&i, r+1&i]) n0
(t)(2[ j+1, r+1]

[ j+2&i, r+2&i]) n0
(t)

(2[ j, r+1]
[ j+1&i, r+2&i]) n0

(t)(2[ j+1, r+1]
[ j+1&i, r+1&i]) n0

(t)
. (2.4.15)

The minors on the right-hand side of (2.4.15) are given by the following
lemma.

2.4.7. Lemma. For any two indices a and b such that 1�a<b�r, we
have

(2[b+1, r+1]
[b+1&a, r+1&a]) n0

(t)= `
a

i=1

`
r+1

j=b+1

tij . (2.4.16)
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Fig. 7. Graph 1(n0).

Proof of Lemma 2.4.7. The proof is very similar to that of Corollary
2.4.5. The graph 1(n0) is shown in Fig. 7 (it is drawn in the ``compressed''
form, with irrelevant horizontal segments contracted).

Direct inspection shows that there is a unique family of r+1&b vertex-
disjoint paths [?1 , ..., ?r+1&b] in 1(n0) that join the sources sb+1&a , ...,
sr+1&a with the sinks Sb+1 , ..., Sr+1 , and the product of weights of these
paths is exactly the right-hand side of (2.4.16). K

To complete the proof of Theorem 2.4.6, it remains to substitute the
expressions given by Lemma 2.4.7 into the right-hand side of (2.4.15), and
perform the cancellation. K

As an immediate consequence of (2.4.15), we obtain the following state-
ment that shows the relevance of the nil�Temperley�Lieb algebra to the
study of the Lusztig variety.

2.4.8. Corollary. The map t [ X(t) from the Lusztig variety Lr(P) to
the algebra NTLr(P) is infective. Equivalently, the functions t [ 2J

I (t)
separate the points of the Lusztig variety.

2.5. Chamber Ansatz

In this section, we describe how elements of the Lusztig variety can be
constructed by means of a special substitution that involves variables
indexed by all subsets of the set [1, r+1]. To describe this construction,
we will need the following notation (cf. (1.6)).

Let n be a normal ordering of 6. Define

L=L n(i, j)[k: Linek passes below the intersection of

Linei and Linej in Arr(n)]. (2.5.1)
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For instance, in Fig. 4, L n(1, 3)=[2, 4] which we will simply write as 24.
One can rewrite (2.5.1) directly in terms of the normal ordering n:

Ln(i, j)=[a: i{a< j, (a, j)On (i, j)] _ [b: j<b, (i, j)On (i, b)] (2.5.2)

where O n stands for ``precedes in n.'' This definition can also be restated
in terms of the reduced word h corresponding to n (see (1.6)).

Let MJ (J/[1, r+1]) be a family of variables with values in a semifield K.
The Chamber Ansatz substitution is defined by

tn
ij=

ML MLij

MLi MLj
(2.5.3)

where L=Ln(i, j) is given by (2.5.1), and Li, Lj, and Lij stand for L _ [i],
L _ [ j], and L _ [i, j], respectively. In our running example (see Fig. 4),

t23=
M4M234

M24M34

, t24=
M,L24

M2M4

, t13=
M24M1234

M124M234

,

t14=
M2M124

M12M24

, t34=
M12M1234

M123M124

, t12=
M,M12

M1M2

.

2.5.1. Proposition. The point t=(tn
ij) whose components are defined by

the Chamber Ansatz (2.5.3) belongs to the Lusztig variety Lr(K) if and only
if the MJ satisfy the relations

MLik MLj=MLijMLk+MLjk MLi (2.5.4)

for every three indices i< j<k in [1, r+1] and every subset L/[1, r+1]
such that L & [i, j, k]=,.

Proof. The fact that tn$=t n whenever n and n$ differ by a 2-move, is
obvious from (2.5.3). It remains to check that the 3-move relations (2.3.3)
translate into (2.5.4). Suppose n$ is obtained from n by a 3-move applied
to consecutive entries (i, j), (i, k), and ( j, k) where i< j<k. The set

L=[l: Linel passes below the triangle formed by

Linei , Linej , and Linek] (2.5.5)

is clearly the same for n and n$, as shown in Fig. 8.
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Fig. 8. Transformation of the chamber sets under a 3-move.

Denoting t=tn and t$=tn$, we see that (2.5.3) takes the form

tij=
MLkMLijk

MLik MLjk
, tik=

MLMLik

MLi MLk
, tjk=

MLiMLijk

MLijMLik
,

t$ij=
MLMLij

MLi MLj
, t$ik=

MLj MLijk

MLijMLjk
, t$jk=

MLMLjk

MLj MLk
.

Substituting these expressions into (2.3.3) and clearing denominators yields
(2.5.4). To complete the proof, it remains to note that, for every i, j, k and
L as in Proposition 2.5.1, there exists a normal ordering n, in which (i, j),
(i, k), and ( j, k) are consecutive, and L is given by (2.5.5). K

We shall refer to (2.5.4) as the 3-Term Relations. Examples of their solu-
tions will be given in the next section. We will then show in Section 2.7 that
every point of the Lusztig variety Lr(K) (and thus of its subvariety Lr(P))
can be obtained via the Chamber Ansatz.

The name of our Ansatz comes from the following reformulation.
Chambers of an arrangement Arr(n) are the connected components of the
complement to the union of all pseudo-lines. It is easy to see that every
arrangement has ( r

2) bounded and 2r+2 unbounded chambers. With a
chamber C, we associate the chamber set

L(C)=[k: Linek passes below C] (2.5.6)

(see Fig. 4). If A, B, C, and D are the four chambers adjacent to the inter-
section of Linei and Linej in Arr(n) and listed counterclockwise, A being
the chamber below tij , then (2.5.3) can be rewritten as

tn
ij=

ML(A) ML(C)

ML(B) ML(D)

. (2.5.7)
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2.5.2. Remark. The chamber sets of n only depend on the isotopy class
of the pseudo-line arrangement Arr(n) (cf. Remark 2.3.2). It is not hard to
show that, conversely, the isotopy class of Arr(n) is uniquely determined by
its family of chamber sets. A characterization of families of subsets that
appear as chamber sets in the same arrangement will be given in a forth-
coming paper by B. Leclerc and A. Zelevinsky.

2.6. Solutions of the 3-Term Relations

Note that the 3-Term Relations (2.5.4) do not involve division and thus
make sense when P is any commutative ring or, more generally, any com-
mutative semiring; for this purpose, we do not need the condition (2.1.1).

2.6.1. Definition. Let P be a commutative ring and y be an (r+1)_
(r+1) matrix with entries in P. Let J be a subset of [1, r+1] of size l.
As in Section 2.4, 2J ( y) will denote the corresponding flag minor of y, i.e.,
the minor with column set J and row set [1, l].

2.6.2. Proposition. The flag minors 2J=2J ( y) of any square matrix y
satisfy the 3-Term Relations (2.5.4):

2Lik2Lj=2Lij2Lk+2Ljk2Li (2.6.1)

where, as before, i< j<k and L & [i, j, k]=,.

Proof. Equation (2.6.1) is a special case of the classical Plu� cker rela-
tions (see, e.g., [18, (15.53)]). K

The previous construction may not be directly used for an arbitrary
semiring P because the calculation of minors involves subtraction. We will
now bypass this problem by introducing ``surrogate minors'' via vertex-
disjoint path families, in the spirit of Section 2.4.

2.6.3. Example. Let 1 be a planar acyclic directed graph with the set
of vertices V and the set of edges E. Suppose 1 has sources s1 , ..., sr+1 and
sinks S1 , ..., Sr+1. We also assume that, as before, 1 is contained in a
vertical strip, with sources and sinks on its left and right boundaries,
respectively, both numbered bottom-up. Let w: E � P be a function with
values in an arbitrary semiring P. Define the weight w(?) of an oriented
path ? as the product of the weights w(e) for all edges e of ?. For any sub-
sets I, J/[1, r+1] of the same size l, let

2J
I =2J

I (1, w)= :
?1, ..., ?l

w(?1) } } } w(?l) (2.6.2)
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where the sum is over all families of l vertex-disjoint paths [?1 , ..., ?l], each
path connecting a source si , i # I, with a sink Sj , j # J. As before, we will
use the notation

2J=2J
[1, l] . (2.6.3)

2.6.4. Theorem. For any planar graph 1 and weight function w as above,
the elements 2J defined by (2.6.2)�(2.6.3) satisfy the 3-Term Relations (2.6.1).

Proof. For each L, i, j, and k, both sides of (2.6.1) are universal (that
is, independent of the ground semiring P) polynomials with nonnegative
integer coefficients in the variables w(e), e # E. By Proposition 2.1.7, it is
enough to prove (2.6.1) in the case when the underlying semiring is R>0.
In this case, the Lindstrom lemma [27] asserts that 2J

I is simply a minor
(with the row set I and column set J) of the matrix (aij) defined by

aij=:
?

w(?) (2.6.4)

where the sum is over all paths ? connecting the source si with the sink Sj .
Thus, for P=R>0, Theorem 2.6.4 becomes a special case of Proposition
2.6.2. K

Formula (2.6.2) shows that, for a nonnegative weight function w, the
matrix (aij) defined by (2.6.4) has nonnegative minors. This observation is
by no means new; it has been used to prove total positivity of various
matrices arising in combinatorics (see [6]).

Theorem 2.6.4 can be applied to the graph 1(n) and the weight function
w constructed in Section 2.4. By Theorem 2.4.4, the polynomial 2J

I (1(n), w)
coincides with (2J

I ) n. Thus, we obtain the following corollary.

2.6.5. Corollary. For any normal ordering n of 6, the polynomials
(2J) n satisfy the 3-Term Relations (2.6.1).

2.6.6. Example. We will now construct a solution of the 3-Term Relations
(2.5.4) from an arbitrary family

t=(tij : 1�i< j�r+1) (2.6.5)

of elements of the ground semiring P (in the notation of Section 2.3,
t # P6).

For a subset J=[ j1< } } } < jl]/[1, r+1], we define a J-tableau as an
upper-triangular matrix A=(apq)1� p�q�l with integer entries satisfying

app=jp , p=1, ..., l (2.6.6)
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and the usual monotonicity conditions for semistandard, or column-strict
Young tableaux (see, e.g., [31]):

apq�ap, q+1 , apq<ap+1, q . (2.6.7)

Then let

MJ=MJ (t)=:
A

`
1� p<q�l

tapq, apq+q& p (2.6.8)

where the sum is over all J-tableaux A=(apq).
To illustrate the formula (2.6.8), consider an example J=[1, 3, 4]. The

J-tableaux are:

1 1 1 1 1 2 1 2 2

_ 3 3& , _ 3 3& , _ 3 3& . (2.6.9)

4 4 4

To compute MJ , we ignore the diagonal entries in these matrices and
replace each entry a in the d th diagonal above the main one by the
variable ta, a+d . Then sum up the products of entries:

MJ=t12 t13 t34+t12 t24 t34+t23 t24 t34 . (2.6.10)

2.6.7. Proposition. For any family t # P6, the elements MJ defined by
(2.6.8) satisfy the 3-Term Relations (2.5.4).

Proof. We shall construct a planar graph 1 and weight function w (see
Fig. 9) such that the elements 2J given by (2.6.3) will coincide with the
expressions (2.6.8); the proposition will then follow from Theorem 2.6.4.
The vertices of 1 are lattice points (i, j) with 1�i� j�r+1. The edges are
of two types: the vertical segments directed from (i, j) to (i+1, j) and the
diagonal ones from (i, j) to (i+1, j+1). The weight w(e) of any diagonal
edge e is 1; the weight of a vertical edge from (i, j) to (i+1, j) is set to
be tij . The sources are si=(1, i) and the sinks are Sj=( j, j). Although this
graph does not exactly fall under the description of Example 2.6.3 (the
location of sources and sinks is somewhat different), one can easily see that
this discrepancy is irrelevant.

For J=[ j1< } } } < jl], consider a system ?1 , ..., ?l of vertex-disjoint
paths connecting the sources s1 , ..., sl with the sinks Sj1

, ..., Sjl
, respectively.

To such a system, we associate a J-tableau A=(apq) as follows:

apq=max[i : (i, i+q& p) # ?q].
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Fig. 9. Graph 1 used in the interpretation of J-tableaux.

It is straightforward to check that this formula establishes a bijective
correspondence between systems of paths as above and J-tableaux. Under
this bijection, the weight w(?1) } } } w(?l) of a system of paths equals the
product > tapq, apq+q& p in (2.6.8) for the corresponding J-tableau A. This
completes the proof. K

The correspondence described above is illustrated in Fig. 10; the three
systems of paths shown correspond to the three tableaux of (2.6.9), in the
same order.

2.6.8. Remark. The J-tableaux defined above are closely related to the
Gelfand�Tsetlin patterns (see, e.g., [7, Section 8]). Replacing each entry
apq by apq& p+1 converts a J-tableau into a matrix that can be viewed as
a Gelfand�Tsetlin pattern whose highest weight is

*=( jl&l+1, ..., j2&1, j1).

Fig. 10. Path families corresponding to J-tableaux in (2.6.9).
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Such GT-patterns are in a natural bijection with semi-standard Young
tableaux of shape *; their number (thus the number of summands in
(2.6.8)) is the dimension of the irreducible representation of GLl with
highest weight *.

2.7. An Alternative Description of the Lusztig Variety

Let M� =M� r(K) be the set of all tuples M=(MJ)J/[1, r+1] of elements of
the ground semifield K satisfying the 3-Term Relations (2.5.4). According
to Proposition 2.5.1, the Chamber Ansatz (2.5.3) provides a well-defined
map M [ t(M) from M� r(K) to Lr(K).

Let M=Mr(K) be the subset of M� formed by those tuples M=(MJ)
that, in addition to (2.5.4), satisfy the normalization condition

M,=1, M[1, b]=1, b=1, ..., r+1. (2.7.1)

2.7.1. Theorem. The restriction of the Chamber Ansatz map M [ t(M)
onto Mr(K) is a bijection between Mr(K) and the Lusztig variety Lr(K). The
inverse bijection t=(tn

ij) [ M(t)=(MJ) from Lr(K) to Mr(K) is given by

MJ=MJ (t)=\ `
i � J, j # J, i< j

tn
ij+

&1

(2.7.2)

whenever J is a chamber set for n.

Proof. First, we observe that each subset J/[1, r+1] appears as a
chamber set L(C) in some arrangement Arr(n). To prove Theorem 2.7.1,
it is enough to verify the following statements:

(i) the MJ are well defined via (2.7.2), that is, for a given J, the
right-hand side of (2.7.2) does not depend on the choice of n such that J
is a chamber set for n;

(ii) the MJ given by (2.7.2) satisfy (2.5.4) and (2.7.1) (i.e., M # Mr(K));

(iii) the maps given by (2.5.3) and (2.7.2) are inverse to each other.

We start with the proof of (i).

2.7.2. Lemma. Suppose J is a chamber set for both n and n$. Then one can
convert n into n$ by a sequence of 2- and 3-moves, keeping J as a chamber
set at all times.

Proof. Let h be the reduced word associated with n. Consider the
pseudo-line arrangement Arr(n). Draw a vertical line l just before the right-
most point of the chamber whose chamber set is J (we will later refer to
it as the J-chamber). Line l partitions the reduced word h into two parts
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h1 and h2 which lie, respectively, to the left and to the right of l. For
example, if h=213231, as in Figs. 3 and 4, and J=[2, 3, 4], then h1=21
and h2=3231. Let w1 and w2 be the permutations whose reduced words
are h1 and h2 .

Let us now apply 2- and 3-moves to the reduced word h2 , keeping h1

unchanged. In this way, we can transform h2 into an arbitrary reduced
word h$2 for w2 . The concatenation of h1 and h$2 is again a reduced word
for w0 , with J as a chamber set.

One can view a reduced word for w2 as a process of sorting the sequence
obtained by reading bottom-up the numbers of pseudo-lines intersecting
the vertical line l. This sequence begins with the elements of J (in some
order), followed by some permutation of the complement J� . It is clearly
possible to begin the sorting process by completely sorting out the elements
of J, then sort the elements of the complement, and finally make all
necessary switches between the elements of J and J� . Let h� 2 denote the
reduced word for w2 that corresponds to the described process.

As shown above, we can convert h into the concatenation h� of h1 and h� 2 ,
keeping J as a chamber set at all times. In the arrangement for h� , let us
consider the vertical line l� chosen in the same way as l above, i.e., passing
just before the rightmost point of the J-chamber. By our construction, the
part of h� lying to the right of l� is a reduced word of a certain permutation
wJ that canonically corresponds to J; namely, wJ sends J to [1, |J |], and
J� to [|J |+1, r+1], and is increasing on both J and J� . Separately applying
2- and 3-moves to the parts of h� lying to the left and to the right of l� , we
can transform h� to an arbitrary reduced word for w0w&1

J followed by an
arbitrary reduced word for wJ ; clearly, J will remain as a chamber set
under all these operations.

Since the same construction can be applied to the reduced word h$
associated with n$, our statement follows. K

2.7.3. Lemma. Assume n and n$ differ by a single 2- or 3-move, and J is
a chamber set for both n and n$. Then

`
i � J, j # J, i< j

tn
ij= `

i � J, j # J, i< j

tn$
ij . (2.7.3)

Proof. First note than a 2-move does not change any of the tij .
A 3-move involving pseudo-lines Linei , Line j , and Linek (i< j<k) only
changes the variables tij , tik and tjk according to (2.3.3). Among these three
variables, the products in (2.7.3) either contain none, or tij and tik , or tik

and tjk . In each of these cases, the identity (2.7.3) holds, since, in (2.3.3),
tij tik=t$ij t$ik and tik tjk=t$ik t$jk . K
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Statement (i) is an immediate consequence of the last two lemmas. To
prove (ii), note that the normalization condition (2.7.1) is obvious, since
the corresponding products in (2.7.2) are empty. To prove (2.5.4), we
use the following statement which can be checked by straightforward
calculation:

(iv) the MJ given by (2.7.2) satisfy the Ansatz (2.5.3).

Now the 3-Term Relations (2.5.4) follow from Proposition 2.5.1. This
proves (ii), i.e., we have verified that (2.7.2) gives a well defined map
L � M.

According to (iv), the composition L � M � L is the identity map on
the Lusztig variety. Thus, the Chamber Ansatz map M [ t(M) is a surjec-
tion M � L. To complete the proof of (iii), it remains to prove that the
composition M � L � M is the identity map on M. Instead of proving
this by a direct computation (which is somewhat cumbersome) we can use
the following ``qualitative'' argument. Clearly, it is enough to show that the
Chamber Ansatz map M [ t(M) is an injection M � L. In other words,
it is enough to show that the coordinates ML(C) for all chambers C in the
arrangement Arr(n) are uniquely determined by the coordinates tn

ij of t=
t(M). First note that, in view of (2.7.1), ML(C)=1 for the chambers adjacent
to the right boundary. Now the remaining values ML(C) can be computed
recursively, by moving from the right boundary to the left one and
repeatedly using (2.5.7).

This completes the proof of Theorem 2.7.1. K

2.7.4. Corollary. For each n, the components ML(C) for all chambers
C in the arrangement Arr(n) that are not adjacent to the right boundary,
form a system of independent coordinates on M=Mr(K), i.e., they can
be assigned arbitrary values in K, and the remaining components MJ of
a point M # M are expressed through them as subtraction-free rational
expressions.

Proof. Let t # L and M # M correspond to each other as in Theorem
2.7.1. By (2.5.3) and (2.7.2), for each n, the coordinates tn

ij of t and the com-
ponents ML(C) of M for all chambers C in the arrangement Arr(n) that are
not adjacent to the right boundary, are related to each other by an inver-
tible monomial transformation. On the other hand, by Theorem 2.2.6, the
components tn

ij for a given n form a system of independent coordinates on
L. This proves the claim. K

We shall later refine Corollary 2.7.4 by showing that, for each n, the MJ

are Laurent polynomials with nonnegative integer coefficients in the
variables tn

ij (or, equivalently, in the corresponding variables ML(C)).
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We conclude this section with a more symmetric description of the set
Mr(K). Let H=Kr+2 be the multiplicative group of sequences

c=(c0 , c1 , ..., cr+1), cj # K.

It follows from (2.5.4) that one can define an action of H on M� r(K) by

(cM)J=\c0 `
j # J

cj+ } MJ . (2.7.4)

We denote by M� �H the set of orbits under this action. The following propo-
sition is a straightforward consequence of the definitions and Theorem 2.7.1.

2.7.5. Proposition. 1. The set Mr(K) is a set of representatives of
H-orbits in M� r(K).

2. The map M [ t(M) is constant on H-orbits, and induces a bijection

M� r(K)�H � Lr(K).

Thus one can naturally identify each of the varieties L and M with the
orbit space M� �H.

2.8. Transition from n0

In this section, we will use the Chamber Ansatz for ``reversing the direc-
tion'' in Theorem 2.4.6, i.e., we will compute the transition map from n0 to
an arbitrary normal ordering n of 6, where n0 is given by (2.4.13).

For a family t=(tij) # P6 and a subset J/[1, r+1], define M� J (t) by
the formula (2.6.8):

M� J (t)=:
A

`
1� p<q�l

tapq , apq+q& p , (2.8.1)

where the sum is over all J-tableaux A (see Example 2.6.6).

2.8.1. Proposition. For any normal ordering n of 6, the transition map
from n0 to n is given by

(Rn
n0(t)) ij=

M� L(t) M� Lij (t)
M� Li (t) M� Lj (t)

(2.8.2)

where L=Ln(i, j) is given by (2.5.1).

Proof. Let M� (t)=(M� J (t)). By Proposition 2.6.7, the family M� (t)
belongs to M� r(K) for any t # K6. By Proposition 2.5.1, applying the

88 BERENSTEIN, FOMIN, AND ZELEVINSKY



File: 607J I56741 . By:BV . Date:26:08:96 . Time:13:44 LOP8M. V8.0. Page 01:01
Codes: 2622 Signs: 1539 . Length: 45 pic 0 pts, 190 mm

Chamber Ansatz to this family produces an element t=t(M� (t)) of the
Lusztig variety Lr(K). Thus the proposition can be reformulated as follows:

t=t(M� (t)) is the unique element of Lr(K) such that

tn0

ij =tij for all i and j. (2.8.3)

In other words, we only need to establish (2.8.2) for n=n0. Using (2.5.1)
or (2.5.2), we obtain

Ln0
(i, j)=[i+1, j&1]. (2.8.4)

Thus, the equality we need to prove takes the form

tij=
M� [i+1, j&1](t) M� [i, j](t)
M� [i, j&1](t) M� [i+1, j](t)

. (2.8.5)

To check (2.8.5), we apply the definition of the M� J (t) to the case when J
is an interval: J=[i+1, j]. Then there is only one J-tableau A=(apq),
given by

apq=i+ p, p=1, ..., j&i,

and we obtain

M� [i+1, j](t)= `
i<a<b� j

tab . (2.8.6)

To prove (2.8.5), it remains to substitute the expressions given by (2.8.6)
into its right-hand side, and perform the cancellation. This completes the
proof of Proposition 2.8.1. K

It will be convenient for us to simplify (2.8.2) by extracting from each
M� J (t) the greatest common divisor of all its monomials. To describe this
g.c.d., we need some useful terminology and notation. Any subset J/
[1, r+1] can be written as a disjoint union of intervals

J=[a1+1, b1] _ [a2+1, b2] _ } } } _ [as+1, bs]
(2.8.7)

(0�a1<b1<a2<b2< } } } <as<bs�r+1);

the intervals [ak+1, bk] will be called the components of J. Let lk=bk&ak

be the size of the k th component of J, and let l=l1+ } } } +ls be the size
of J. Let us subdivide the interval [1, l] into disjoint intervals I1 , ..., Is of
sizes l1 , ..., ls , numbered from left to right. We set

E(J)= .
1�u<v�s

(Iu_Iv)/[1, l]_[1, l], (2.8.8)
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and define the polynomial QJ (t) by

QJ (t)=:
A

`
( p, q) # E(J)

tapq , apq+q& p , (2.8.9)

where the sum is over all J-tableaux A=(apq). We will call E(J) the essen-
tial set for J.

To explain this terminology, consider any J-tableau A=(apq)1� p<q�l .
Conditions (2.6.7) imply that, whenever indices p<q belong to the same
interval Ik , we have

apq=ak+p&(l1+l2+ } } } +lk&1). (2.8.10)

Thus, if a pair ( p, q) does not belong to the essential set E(J), then apq has
the same value (2.8.10) for every J-tableau A. Splitting each monomial in
M� J (t) into its essential and non-essential parts, we can rewrite (2.8.1) as
follows:

M� J (t)=\ `
a<b

te(J; a, b)
ab + } QJ (t), (2.8.11)

where

e(J; a, b)={1,
0,

if a and b lie in the same component of J;
otherwise.

(2.8.12)

We are now in a position to reformulate Proposition 2.8.1.

2.8.2. Theorem. For any normal ordering n of 6, the transition map
from n0 to n is given by

(Rn
n0(t)) ij=\ `

[i, j]/[a, b]

te(Lij; a, b)
ab + QL(t) QLij (t)

QLi (t) QLj (t)
(2.8.13)

where L=Ln(i, j), and the QJ (t) are given by (2.8.9).

Proof. Substitute the expressions given by (2.8.11) into (2.8.2) and com-
pare the resulting expression with (2.8.13). To prove our theorem, we only
need to check that the exponent

e(Lij; a, b)+e(L; a, b)&e(Li; a, b)&e(Lj; a, b)

equals e(Lij; a, b) if [i, j]/[a, b], and vanishes otherwise. This is straight-
forward. K
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2.8.3. Example. If J=[a+1, b] is an interval, then the essential set
E(J) is empty, and there exists exactly one J-tableau given by (2.8.10).
Thus

Q[a+1, b]=1. (2.8.14)

Now consider a set J=[a+1, b] _ [c+1, d] with two components.
Then E(J) is a ``rectangle'' [1, b&a]_[b&a+1, b&a+d&c]. The shift
of indices ( p, q) [ ( p, q&b+a) turns E(J) into [1, b&a]_[1, d&c],
while the shift apq [ apq&a converts any J-tableau into a semi-standard
Young tableau with entries in [1, c&a]. Performing both shifts, we can
rewrite QJ as follows:

Q[a+1, b] _ [c+1, d](t)=:
{

`
( p, q) # [1, b&a]_[1, d&c]

t{( p, q)+a, {( p, q)+b+q& p ,

(2.8.15)

where the sum is over all Young tableaux {: [1, b&a]_[1, d&c] �
[1, c&a].

For instance, if J=[1, 3, 4] (cf. example (2.6.9)), then the Young
tableaux contributing to (2.8.15) are 1 1 , 1 2 , and 2 2 , yielding

QJ (t)=t12 t13+t12t24+t23 t24

(cf. (2.6.10)).

As explained in the Introduction, Theorems 2.4.6 and 2.8.1 allow us to
compute any transition map Rn$

n as the composition Rn$
n0 b Rn0

n . It is desirable,
however, to find a direct formula for Rn$

n . Some partial results in this direc-
tion will be obtained in the next chapters.

2.9. Polynomials T n
J and Za

In this section, we develop a general framework that will be used in
subsequent computations of transition maps.

According to Theorem 2.7.1, the Chamber Ansatz identifies the Lusztig
variety Lr(K) with the set Mr(K) of tuples (MJ) satisfying the 3-Term
Relations (2.5.4) and the normalization conditions (2.7.1). If we use this
identification, each component MJ becomes a function on Lr(K) with
values in K. For any normal ordering n of 6, we will denote by M n

J the
corresponding function K6 � K, which describes MJ in terms of the coor-
dinates t=(tij) associated with n (see Section 2.3). For example, if J is a
chamber set for n, then, in accordance with (2.7.2),

M n
J (t)=\ `

i � J, j # J, i< j

tij+
&1

. (2.9.1)
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In particular,

M n
[a+1, r+1](t)=\ `

i�a< j

tij+
&1

, a=1, ..., r (2.9.2)

for any n whatsoever.
Using this notation, we can reformulate Theorem 2.7.1 as a statement

about transition maps, as follows.

2.9.1. Theorem. For any two normal orderings n and n$ of 6, the tran-
sition map from n to n$ is given by

(Rn$
n (t)) ij=

M n
L$(t) M n

L$ij (t)
M n

L$i (t) M n
L$j (t)

(2.9.3)

where L$=Ln$(i, j).

In view of this theorem, in order to obtain a direct formula for Rn$
n , it

would be enough to compute the functions M n
J for all chamber sets J for n$.

One inconvenience of this approach is that the functions M n
J are not

polynomials in the tij (see, e.g., (2.9.1)). We will now introduce another
system of coordinates on Mr(K) which will not have this drawback.
Namely, for a=1, ..., r and J/[1, r+1], we define the functions Za and
TJ on Mr(K) by

Za=
1

M[a+1, r+1]

, TJ=
MJ

>a � J, a+1 # J M[a+1, r+1]

. (2.9.4)

The collection of all Za and TJ determines all the components MJ as
follows:

MJ=
TJ

>a � J, a+1 # J Za
, (2.9.5)

which shows that the systems of functions (MJ) and (Za , TJ) are related to
each other by an invertible monomial transformation. Thus, the Za and the
TJ , taken together, can be used as coordinates on Mr(K). We will now
restate the definition of Mr(K) in terms of these coordinates.

2.9.2. Proposition. The 3-Term Relations for the components MJ of an
element M # Mr(K) translate into the following relations for the Za and TJ :

TLik TLj=Z $i+1, j
i TLij TLk+Z$j+1, k

j TLjkTLi (2.9.6)

T[1, a]=T[a+1, r+1]=1 (2.9.7)

for any a # [0, r+1], any 1�i< j<k�r+1, and any L/[1, r+1] such
that L & [i, j, k]=,.
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Rewriting the Chamber Ansatz bijection Mr(K) � Lr(K) given by (2.5.3),
in terms of the Za and TJ yields

tn
ij=Z $i+1, j

i

TLTLij

TLiTLj
, (2.9.8)

where the set L=Ln(i, j) is given by (2.5.1) or (2.5.2). Using the inverse
bijection Lr(K) � Mr(K), we can regard the Za and TJ as functions
Lr(K) � K. This, for every normal ordering n of 6, gives rise to well-
defined functions T n

J and Zn
a on K6 with values in K. In view of (2.9.2), the

functions Zn
a do not depend on n. With some abuse of notation, we will

simply write Za(t) for Zn
a(t). Thus

Za(t)= `
i�a< j

tij . (2.9.9)

We hope it will always be clear from the context whether Za is regarded as a
function on the Lusztig variety, or as a monomial given by (2.9.9). Comparing
(2.9.9) with (2.4.11), we see that Za can also be written as a ``minor:''

Za=2[a+1, r+1]. (2.9.10)

With all this notation, formula (2.9.8) is equivalent to the following
formula for the transition map between any two normal orderings:

(Rn$
n (t)) ij=Zi (t)$i+1, j

T n
L$(t) T n

L$ij (t)
T n

L$i (t) T n
L$j (t)

, (2.9.11)

where L$=Ln$(i, j) (cf. (2.9.3)).
An advantage of (2.9.11) over (2.9.3) will become clear in the next chapter

when we will show that all T n
J are polynomials in the tij with nonnegative

integer coefficients. Unfortunately, the problem of finding explicit
combinatorial formulas for all these polynomials remains open. In the next
section, we present some partial results in this direction.

2.10. Formulas for T n
J

We start with the case when J is a chamber set for n. In view of (2.9.1)
and (2.9.2), in this case T n

J is a monomial which does not depend on n. To
describe this monomial, we will write J as the union of its components (see
(2.8.7)). Let s(J) be the number of these components, and let J� denote the
complement [1, r+1]&J. For any pair (i, j) # 6, we set

c(J; i, j)=max(s(J & [i, j]), s(J� & [i, j]))&1. (2.10.1)

The following proposition is an easy consequence of (2.9.1), (2.9.2) and
(2.9.4).
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2.10.1. Proposition. If J is a chamber set for n, then

T n
J= `

i< j

tc(J; i, j)
ij . (2.10.2)

Our next goal is to compute the polynomial T n
[a+1, b] for arbitrary n.

Thus we are looking at the case when J has only one component.

2.10.2. Proposition. As a function on the Lusztig variety, T[a+1, b]

coincides with the ``minor'' 2[b+1, r+1]
[b+1&a, r+1&a] (see Section 2.4). Hence for any

normal ordering n of 6, the function T n
[a+1, b] : K 6 � K is a polynomial in

the tij which is given by (2.4.10), with I=[b+1&a, r+1&a] and J=
[b+1, r+1].

Proof. It is enough to verify the case n=n0. In this case, [a+1, b] is
a chamber set (see (2.8.4)). For this set, (2.10.1) becomes

c([a+1, b]; i, j)={1,
0,

if i�a<b< j;
otherwise.

(2.10.3)

Then, by (2.10.2), (2.10.3), and (2.4.16), we have

T n0

[a+1, b]= `
i< j

tc([a+1, b]; i, j)
ij = `

i�a<b< j

tij=(2[b+1, r+1]
[b+1&a, r+1&a]) n0

,

as desired. K

Using the above proposition, we can check directly that formula (2.4.14)
for the transition map Rn0

n is indeed a special case of the general formula
(2.9.11). Note that the factor Zi (t) in (2.9.11) only appears when i+1= j,
i.e., exactly when Ln0

(i, j)=,. This explains why, in the special case n$=n0,
the right-hand side of (2.9.11) contains at most four factors {1.

The formulas for the transition maps Rn
n0 given in Proposition 2.8.1 and

Theorem 2.8.2 can be also seen to be a special case of (2.9.11). To
demonstrate this, we will give explicit formulas for the polynomials T n0

J for
all J/[1, r+1].

2.10.3. Theorem. For any subset J/[1, r+1], the polynomial T n0

J is
given by

T n0

J (t)=\`
i< j

td(J; i, j)
ij + } QJ (t) (2.10.4)

where the polynomial QJ (t) is given by (2.8.9), and d(J; i, j) denotes the num-
ber of components [ak+1, bk] of J which are contained in [i+1, j&1], i.e.,
such that i�ak<bk< j.
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Proof. Fix elements tij # K, and let M� J be defined by (2.8.1). By Propo-
sition 2.7.5, there is a unique element M=(MJ) # Mr(K) in the H-orbit of
M� =(M� J). In view of (2.8.3), MJ=M n0

J (t) for all J. By definition (2.7.4),

M� J=\c0 `
j # J

cj+ } MJ (2.10.5)

for some c0 , c1 , ..., cr+1 # K. To find the coefficients cj , we use (2.10.5) for
J=[1, b], b=0, 1, ..., r+1. By (2.8.6),

M� [1, b]= `
1�i< j�b

tij ;

on the other hand, M[1, b]=1 by (2.7.1). Substituting these values into
(2.10.5), we find

cb=
M� [1, b]

M� [1, b&1]

=t1bt2b } } } tb&1, b .

Now, using (2.10.5) for an arbitrary J, we obtain

Mn0

J (t)=
M� J

>i<1 t$J ( j)
ij

(2.10.6)

where $J is the indicator function of J.
It remains to pass from Mn0

J to T n0

J . Combining (2.9.4) with (2.10.6) and
(2.8.11), we get

T n0

J (t)=\`
i< j

t*[k: i�ak< j]&$J ( j)+e(J; i, j)
ij + } QJ (t).

To complete the proof of our theorem, we need to show that

d(J; i, j)=*[k: i�ak< j]&$J ( j)+e(J; i, j),

which is straightforward. K

2.11. Symmetries of the Lusztig Variety

We conclude this chapter by exploring some symmetry properties of the
Lusztig variety.

For a normal ordering

n=((i1 , j1), ..., (im , jm))
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of 6, let n� and n* denote the normal orderings

n� =((im , jm), ..., (i1 , j1)),
(2.11.1)

n*=((r+2& jm , r+2&im), ..., (r+2& j1 , r+2&i1)).

If n=n(h) corresponds to a reduced word h=(h1 , ..., hm) # R(w0) as
described in Section 2.3, then n� =n(h� ) and n*=n(h*), where h� and h* are
defined by

h� =(r+1&hm , ..., r+1&h1),
(2.11.2)

h*=(hm , ..., h1).

In the language of pseudo-line arrangements, the transformations n [ n�
and n [ n* correspond to 180% rotation and reflection in a vertical mirror,
respectively.

Let t [ t* be an involutive transformation of K6 defined by

(t*) ij=tr+2& j, r+2&i . (2.11.3)

For an element t=(tn) of the Lusztig variety, let

({(t)) n :=tn� , (@(t)) n :=(tn*)*. (2.11.4)

It is straightforward to verify that { and @ are well-defined transformations
of the Lusztig variety Lr(K), or any subvariety Lr(P) of it. A formal check
shows that { and @ are involutions which commute with each other. There-
fore, they define an action of Klein's four-group Z�2Z_Z�2Z on Lr(P).
In the case when P is the tropical semiring (see Example 2.2.5), we obtain
an action of the four-group on the canonical basis. This action was intro-
duced and studied in [7].

The action of Z�2Z_Z�2Z on Lr(P) induces, in a usual way, an action
of the four-group on the set of functions f : Lr(P) � P. Namely, set

f {(t) := f ({(t)), f @(t)= f (@(t)). (2.11.5)

Let us compute how { and @ act on functions Za and TJ defined in
(2.9.4). For a subset J/[1, r+1], let

J� =[1, r+1]&J, J*=[r+2& j: j # J]. (2.11.6)

2.11.1. Proposition. For a=1, ..., r and J/[1, r+1],

Z{
a=Za , Z@

a=Zr+1&a , T {
J=TJ� , T @

J=TJ* . (2.11.7)
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Proof. First let us prove the formulas for Z{
a and T {

J . In view of
Proposition 2.9.2, it suffices to check the following two statements.

(i) The transformation Za [ Za , TJ [ TJ� preserves the relations
(2.9.6)�(2.9.7).

(ii) Replacing t by {(t) and (Za , TJ) by (Za , TJ� ) preserves the rela-
tion (2.9.8).

The proof of (i) is straightforward. As for (ii), it follows easily from observing
that

Ln� (i, j)=Ln(i, j) _ [i, j] (2.11.8)

(cf. (2.5.1) or (2.5.2)). The formulas for Z@
a and T @

J are proved in the same
way, with (2.11.8) replaced by

Ln*(r+2& j, r+2&i)=(L n(i, j))*. K (2.11.9)

Let us now restate Proposition 2.11.1 in terms of the functions T n
J .

2.11.2. Corollary. For any subset J/[1, r+1] and any normal
ordering n of 6,

T n�
J� (t)=T n*

J*(t*)=T n
J (t). (2.11.10)

As an application, we obtain the following symmetry properties of the
transition maps.

2.11.3. Corollary. For any two normal orderings n and n$ of 6,

Rn$
n (t)=Rn� $

n� (t)=(Rn$*
n* (t*))*. (2.11.11)

To prove this corollary, express the transition maps in (2.11.11) via
(2.9.11), and apply (2.11.8)�(2.11.10). It is also possible to prove it directly,
by decomposing the transition from n to n$ into 2- and 3-moves.

Formulas (2.11.11) can be used to establish the following symmetry
property of the transition maps Rn

n0 , where n0 is given by (2.4.13).

2.11.4. Proposition. For any normal ordering n of 6,

Rn*
n0 (t)=(Rn

n0(t*))*. (2.11.12)

Proof. We will use the following lemma [7, Lemma 4.2].
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2.11.5. Lemma. The reduced word (h0)* (resp., the normal ordering
(n0)*) can be obtained from h0 (resp., from n0) by a sequence of 2-moves.

According to this lemma, the transition map R (n0)*
n0 is the identity trans-

formation, hence

Rn
n0=Rn

(n0)* (2.11.13)

for any n. Combining (2.11.13) with (2.11.11) yields (2.11.12). K

3. TOTAL POSITIVITY CRITERIA

In this chapter, we are going to apply the results and constructions of
Chapter 2 to the case of the ground semifield R>0. Recall that in this case
the Lusztig variety can be canonically identified with the variety N>0 of
totally positive matrices (see Theorem 2.2.3). Under this identification, the
components th

k (or, in the notation of Section 2.3, the tn
ij) are the coefficients

in various factorizations of a totally positive matrix x into a product of
elementary Jacobi matrices (see (1.1) or (2.2.1)). In Chapter 2, we used the
Chamber Ansatz to express these coefficients in terms of the functions MJ

on the Lusztig variety (see Section 2.5) or, alternatively, in terms of the
functions Za and TJ (see Section 2.9). Now we will compute all these func-
tions directly in terms of the matrix entries xij of x. This computation will
provide a family of related total positivity criteria.

3.1. Factorization of Unitriangular Matrices

Let x # N>0, and let t=(tn
ij) be the corresponding element of the Lusztig

variety Lr(R>0). By Theorem 2.7.1, the tn
ij are related via the Chamber

Ansatz (2.5.3) to a unique family of positive numbers (MJ=MJ (t)) satis-
fying the 3-Term Relations (2.5.4) and the normalization conditions (2.7.1).
Let y # N be the matrix related to x as in Lemma 1.3, that is,

x=[w0 yT]+, w0 yTw&1
0 =[xw&1

0 ]+ , (3.1.1)

where yT is the transpose of y, and [ g]+ denotes the last factor in the
Gaussian LDU-decomposition of a matrix g. Let us also recall the notation
2J( y) for the flag minor of a matrix y, i.e., the minor that occupies several
first rows and whose column set is J.

3.1.1. Theorem. Let t # Lr(R>0), let x # N>0 be the matrix corre-
sponding to t via (2.2.1), and let y # N be related to x by (3.1.1). Then
MJ (t)=2J ( y) for any J/[1, r+1].
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In other terms, Theorem 3.1.1 asserts that one can compute the coef-
ficients tn

ij participating in the factorization of a totally positive matrix x
into elementary Jacobi matrices, by the formula

tn
ij=

2L( y) 2Lij ( y)
2Li ( y) 2Lj ( y)

;

the same formula is therefore valid for a generic matrix x # N. This proves
Theorem 1.4 from the introduction.

Proof. We start with establishing some identities that relate the minors
of x and y. All of them will be derived from the following statement.

3.1.2. Lemma. Let u=[ g]+ for some matrix g # GLr+1. Then, for any
column set J/[1, r+1], the corresponding flag minor of u is given by

2J (u)=
2J (g)

2[1, |J |](g)
. (3.1.2)

Proof of Lemma 3.1.2. Applying the Binet�Cauchy formula to the LDU-
decomposition g=vT } d } u, we obtain

2 j (g)=2[1, |J |](d ) 2J (u). (3.1.3)

In particular,

2[1, |J | ](g)=2[1, |J |](d ). (3.1.4)

Combining (3.1.3) with (3.1.4) yields (3.1.2). K

3.1.3. Lemma. The following identities hold for the matrices x, y # N
related by (3.1.1):

2J (x)=
2[r+2&|J | , r+1]

J ( y)
2[r+2&|J | , r+1]( y)

(J/[1, r+1]); (3.1.5)

2[d+1, d+b&a] _ [b+1, r+1](x)=
2[1, d] _ [a+1, b]( y)

2[a+1, r+1]( y)

(0�d�a�b�r+1); (3.1.6)
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2[a+1, r+1](x) 2[a+1, r+1]( y)=1

(0�a�r+1); (3.1.7)

2[1, d] _ [a+1, b]( y)=
2[d+1, d+b&a] _ [b+1, r+1](x)

2[a+1, r+1](x)

(0�d�a�b�r+1); (3.1.8)

2[a+1, b]( y)=
2[1, b&a] _ [b+1, r+1](x)

2[a+1, r+1](x)

(0�a�b�r+1). (3.1.9)

Proof of Lemma 3.1.3. To prove (3.1.5), apply Lemma 3.1.2 for g=
w0 yT and u=x. To prove (3.1.6), apply (3.1.5) for J=[d+1, d+b&a] _

[b+1, r+1] and note that, since y # N, then

2[a+1, r+1]
[d+1, b&a+d] _ [b+1, r+1]( y)=2[a+1, b]

[d+1, b&a+d] ( y)=2[1, d] _ [a+1, b]( y).

To prove (3.1.7), apply (3.1.6) for d=0 and b=a. Combining (3.1.6) and
(3.1.7), we obtain (3.1.8). Finally, (3.1.9) follows from (3.1.8) by setting
d=0. K

We are in a position now to finish the proof of Theorem 3.1.1. We start
with an observation that the flag minors 2J ( y) satisfy the 3-Term Relations
(2.5.4) (see Proposition 2.6.2); since y # N, they also satisfy the normaliza-
tion condition (2.7.1). Using Corollary 2.7.4, we conclude that it is enough
to prove the claim MJ (t)=2J ( y) for all chamber sets J in any given
arrangement Arr(n). Taking n=n0, we recall from (2.8.4) that the chamber
sets for n0 are the intervals [a+1, b]/[1, r+1], so we only need to
prove that M[a+1, b](t)=2[a+1, b]( y). This is done by combining (2.9.5),
Proposition 2.10.2, (2.9.10) and (3.1.9):

M[a+1, b](t)=
T[a+1, b](t)

Za(t)
=

2[b+1, r+1]
[b+1&a, r+1&a](x)
2[a+1, r+1](x)

=2[a+1, b]( y). K

3.2. Generalizations of Fekete's Criterion

3.2.1. Theorem. Let x # N, and let n be any normal ordering of 6. Then
the following are equivalent:

(i) the matrix x is totally positive;

(ii) all flag minors 2J (x) of x are positive;

(iii) the flag minors 2L(C)(x) are positive for all chambers C in the
pseudo-line arrangement Arr(n).
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Obviously, (i) O (ii) O (iii), so the essential part of Theorem 3.2.1 is the
implication (iii) O (i). This can be stated as a criterion for total positivity:
in order to test whether x # N is totally positive, it is enough to check
positivity of the flag minors which correspond to chamber sets for n. Note
that, for a chamber adjacent to the right boundary, the corresponding flag
minor has the form 2[1, b] and thus equals 1; therefore, the above criterion
involves exactly m=dim N minors.

Theorem 3.2.1 provides a family of total positivity criteria, one for each
n (or, equivalently, for each commutation class of reduced words for w0).
In particular, in the case n=n0 of the minimal reduced word (see (2.4.12)�
(2.4.13)), the chamber sets are intervals, and we obtain the following classi-
cal result that is essentially due to Fekete (cf. [1, Corollary 2.6]).

3.2.2. Theorem (Fekete's Criterion). A matrix x # N is totally positive if
and only if 2[a+1, b](x)>0 for all 0<a<b�r+1.

Theorem 3.2.1 can be deduced from Fekete's criterion combined with the
following proposition.

3.2.3. Proposition. Every flag minor 2J considered as a polynomial
function on N, can be written as a subtraction-free rational expression in the
minors 2L(C) corresponding to the chamber sets for a given pseudo-line
arrangement.

Proof of Proposition 3.2.3. By Proposition 2.6.2, the flag minors of any
matrix x # N satisfy the 3-Term Relations; they also obviously satisfy the
normalization conditions (2.7.1). The proposition now follows from
Corollary 2.7.4. K

Proof of Theorem 3.2.1. In view of Proposition 3.2.3, the conditions (ii)
and (iii) are equivalent. Using Fekete's criterion 3.2.2, we see that (ii) O (i),
as desired.

We would like to give another proof of Theorem 3.2.1, relying upon the
results in Section 3.1. In particular, this will provide us with an indepen-
dent proof of Fekete's criterion.

Let x [ y= y(x) be the birational automorphism of the group N given
by (3.1.1). Combining Theorem 1.4 with Corollary 2.7.4 applied to the
normal ordering n0, we obtain the following result.

3.2.4. Lemma. For a matrix x # N, the following conditions are equivalent:

(i) x # N>0;

(ii) 2[a+1, b]( y(x))>0 for all 0<a<b�r+1.
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Now our second proof of Theorem 3.2.1 can be completed as follows.
Proposition 3.2.3 shows that (iii) O (ii). In view of Lemma 3.2.4, it remains
to prove that the positivity of the flag minors of x implies 2[a+1, b]( y(x))>0.
But this is immediate from (3.1.9). K

As a byproduct of the above proof, we obtain the following result that
we find of independent interest.

3.2.5. Theorem. The birational automorphism x [ y of the group N
given by (3.1.1) restricts to a bijection N>0 � N>0.

Proof. By Lemma 3.2.4, a matrix x # N is totally positive if and only if
y= y(x) satisfies Fekete's criterion. K

As mentioned in the Introduction, Theorem 3.2.1 can be used to obtain a
set of total positivity criteria for an arbitrary square matrix; see Corollary 1.9.

3.3. Polynomials TJ (x)

We now return to the study of the functions TJ on the Lusztig variety,
which were introduced in Section 2.9. Identifying, as above, Lr(R>0) with
N>0 , we can regard the TJ as functions on N>0 , or as rational functions
on the entire group N. Our first task is to prove that all TJ are polynomials
in the matrix entries of x # N. This will be achieved by obtaining explicit
polynomial expressions for the TJ . (Note that the companion functions Za

are also polynomials, namely, the ``principal'' flag minors given by (2.9.10).)
To describe the polynomials TJ (x), we will need to recall some notation

introduced in Section 2.8 (see (2.8.7) and below). A subset J/[1, r+1]
can be written as the union of its components:

J=[a1+1, b1] _ [a2+1, b2] _ } } } _ [as+1, bs]
(3.3.1)

(0�a1<b1<a2<b2< } } } <as<bs�r+1).

The size of the kth component of J is lk=bk&ak , and l=l1+ } } } +ls is
the cardinality of J. We subdivide the interval [1, l] into disjoint intervals
I1 , ..., Is of sizes l1 , ..., ls , numbered from left to right. With this notation at
hand, let us denote by S(J) the set of permutations _ of [1, l] which have
the following property:

_ increases on each interval Ik and _(Ik) & [bk+1, r+1]=,

for k=1, ..., s. (3.3.2)
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3.3.1. Theorem. For any subset J/[1, r+1] written in the form
(3.3.1), the function TJ on N is a polynomial given by

TJ (x)= :
_ # S(J)

sgn(_) `
s

k=1

2_(Ik) _ [bk+1, r+1](x). (3.3.3)

Proof. Using (2.9.4), (2.9.10), Theorem 3.1.1 and (3.1.7), we obtain

TJ (x)=MJ (x) Za1
(x) } } } Zas(x)=

2J ( y)
2[a1+1, r+1]( y) } } } 2[as+1, r+1]( y)

, (3.3.4)

where y # N is related to x as in (3.1.1). Partitioning the column set J in the
minor 2J ( y) into the components [ak+1, bk] and taking the corre-
sponding Laplace expansion, we obtain

2J ( y)= :
_ # S(J)

sgn(_) `
s

k=1

2[ak+1, bk]
_(Ik) ( y). (3.3.5)

Since y # N, we have

2[ak+1, bk]
_(Ik) ( y)=2[ak+1, r+1]

_(Ik) _ [bk+1, r+1]( y).

Therefore, in view of (3.1.5),

2[ak+1, bk]
_(Ik) ( y)=2_(Ik) _ [bk+1, r+1](x) 2[ak+1, r+1]( y). (3.3.6)

Substituting (3.3.6) into (3.3.5) and then the resulting expression for 2J ( y)
into (3.3.4), we see that all the factors 2[ak+1, r+1]( y) cancel out, yielding
(3.3.3). K

Formula (3.3.3) expresses each TJ (x) as a polynomial in the flag minors
of x. For any particular choice of a normal ordering n and a subset
J/[1, r+1], we can use (2.4.10) to express the minors participating in
(3.3.3), in terms of the corresponding variables tij . This will result in an
explicit formula for T n

J (t). In particular, this argument shows that all the
T n

J are polynomials in the variables tij . We will later prove (see Theorem
3.7.4) that, in fact, these polynomials have nonnegative integer coefficients.
They therefore represent T n

J for an arbitrary ground semifield P (cf. Propo-
sition 2.1.7). Since (3.3.3) involves an alternating sum, some work is needed
to establish this nonnegativity.

It is clear from (2.9.10) that the Za(x) are irreducible polynomials in the
matrix entries of x # N. We will show later (see Proposition 3.6.4) that the
same is true for the functions TJ (x). Thus formulas (2.9.8) express every
component tn

ij as a ratio of products of irreducible polynomials in the
variables xij .
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In view of (2.9.7), there are exactly ( r
2) nontrivial polynomials TJ appearing

in (2.9.8) for any given normal ordering n. Namely, J runs over chamber
sets for Arr(n) which correspond to the bounded chambers. Besides these
polynomials, the formulas (2.9.8) involve Z1(x), ..., Zr(x). The total number
of irreducible factors appearing in (2.9.8), for a given n, is therefore equal
to m=( r+1

2 ) (cf. statement 2 of Corollary 1.6).
Let us now illustrate Theorem 3.3.1 by some examples. First, consider

the case when J=[1, d] _ [a+1, b] for some 0�d<a<b�r+1. In this
case, S(J) only contains the identity permutation, and (3.3.3) gives

T[1, d] _ [a+1, b](x)=2[d+1, d+b&a] _ [b+1, r+1](x) (3.3.7)

(we could also derive it from (3.1.6)). Note that (3.3.7) specializes to
Proposition 2.10.2 when d=0.

For r=2, every subset J/[1, 3] can be written in the form J=[1, d] _

[a+1, b]. Hence each TJ (x) is a flag minor of x given by (3.3.7). The only
nontrivial (i.e., not equal to 1 by virtue of (2.9.7)) polynomials are:

(r=2) T13(x)=x12 T2(x)=x23

For r=3, there is only one subset J/[1, 4] for which (3.3.7) does not
apply, namely J=[2, 4]. For this J, formula (3.3.3) gives

T24(x)=2134(x) 22(x)&2234(x) 21(x).

This is no longer a flag minor of x, but an easy calculation shows that it
still is a minor:

T24(x)=234
13(x) (r=3). (3.3.8)

The full list of nontrivial polynomials TJ (x), for r=3, is thus obtained:

(r=3)

T14(x)=22(x)=x12

T124(x)=23(x)=x13

T3(x)=214(x)=x24

T23(x)=2124(x)=x34

T134(x)=223(x)=x12x23&x13

T13(x)=224(x)=x12x24&x14

T2(x)=2134(x)=x23x34&x24

T24(x)=234
13(x)=x13x34&x14
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For r=4, calculations show that there are exactly two subsets J for which
TJ (x) is not a minor of x:

(r=4)
T24(x)=21345(x) 225(x)&22345(x) 215(x)

(3.3.9)
T135(x)=2245(x) 23(x)&2345(x) 22(x)

Later (see Proposition 3.6.5), we will characterize all subsets J/[1, r+1],
for which TJ (x) is a minor of x; the fraction of such subsets appears to be
equal to

r+1+( r+1
3 )

2r ,

which equals 1 for 1�r�3, but decreases exponentially as r grows.

3.3.2. Example. Let us present a complete solution of Problem 1.1 for
r=4 and h=(1, 3, 2, 4, 1, 3, 2, 4, 1, 3) (this reduced word and its general-
izations play an important role in [28, 29, 9, 10]). The corresponding
pseudo-line arrangement and its chamber sets are shown in Fig. 11. The
normal ordering n is

n=((45), (23), (25), (13), (24), (15), (14), (35), (12), (34)). (3.3.10)
By (2.9.8), the coefficients tij=tn

ij are expressed through the Za=Za(x)
and TJ=TJ (x) as follows:

t45=
Z4

T4

, t23=
Z2

T245

, t25=
T4 T245

T24

, t13=
T245

T1245

, t24=
T24

T2T4

,

t15=
T24T1245

T245 T124

, t14=
T2 T124

T24

, t35=
T124

T1245

, t12=
Z1

T2

, t34=
Z3

T124

.

(3.3.11)

Fig. 11. Pseudo-line arrangement and chamber sets for h=1324132413.
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Using (2.9.10) and Theorem 3.3.1, we obtain the following expressions for
the polynomials Za and TJ that appear in (3.3.11):

Z1=2[2, 5](x), Z2=2[3, 5](x),

Z3=2[4, 5](x), Z4=25(x)=x15 ;

T2=21345(x), T4=215(x),

T124=235(x), T1245=234(x),

T245(x)=2345
124(x), T24=21345(x) 225(x)&22345(x) 215(x).

We conclude this section by providing a family of total positivity criteria
in terms of the polynomials (Za(x), TJ (x)). The following proposition can
be easily derived from Theorems 3.2.1 and 3.2.5.

3.3.3. Proposition. Any pseudo-line arrangement Arr(n) gives rise to
the following criterion: a matrix x # N is totally positive if and only if
Za(x)>0 for a=1, ..., r and TJ (x)>0 for all chamber sets corresponding to
the bounded chambers in Arr(n).

3.3.4. Remark. Note that the polynomials Z1(x), ..., Zr(x) appear in all
the criteria given by the last proposition. This phenomenon is closely
related to the following recent result [34]: the boundary of N>0 in N is the
intersection of N�0 with the union of hypersurfaces [Za=0], a=1, ..., r.
(Here N�0 denotes the set of ``totally nonnegative'' matrices x # N, i.e.,
those whose all minors are nonnegative.)

3.3.5. Remark. Proposition 3.3.3 has a somewhat surprising conclusion
that the positivity of all minors of x is controlled by the positivity of the
polynomials Za(x) and TJ (x), most of which are not minors themselves.
The explanation of this phenomenon is provided by the fact that every
minor of x is a subtraction-free rational expression in the Za(x) and TJ (x).
(This follows immediately from (2.4.10) and (2.9.8).)

3.4. The Action of the Four-Group on N>0

In this section, we consider the automorphisms { and @ introduced in
Section 2.11, for the special case of the Lusztig variety Lr(R>0). Identifying
Lr(R>0) with N>0, we will use the same symbols { and @ to denote the
corresponding transformations of N>0 , as well as their extensions to N.

The definition (2.11.4) (see also (2.11.2)), when applied to the case under
consideration, means that the images of a matrix

x=(1+t1 eh1
) } } } (1+tmehm)
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under { and @ are

{(x)=(1+tmer+1&hm) } } } (1+t1 er+1&h1
),

(3.4.1)
@(x)=(1+tmehm) } } } (1+t1eh1

).

One can compute {(x) and '(x) directly from the matrix x, as follows.

3.4.12. Proposition. The transformations { and @ of N>0 are the restric-
tions of the involative anti-automorphisms of the group N given by

{(x)=w0xTw&1
0 ,

(3.4.2)
@(x)=d0x&1d&1

0 ,

where d0 is the diagonal matrix with diagonal entries 1, &1, 1, &1, ..., (&1)r.

Proof. Both (3.4.1) and (3.4.2) define birational anti-automorphisms of
the group N. Thus, it is enough to check that

1+ter+1&a=w0(1+tea)T w&1
0 ,

(3.4.3)
1+tea=d0(1+tea)&1 d&1

0

for a=1, ..., r. This is straightforward. K

It follows from Proposition 3.4.1 that the anti-automorphisms defined by
(3.4.2) preserve the set of totally positive matrices. This fact can be proved
in a more direct way, by utilizing the identities.

2J
I ({(x))=2I*

J*(x),
(3.4.4)

2J
I (@(x))=2I�

J� (x),

where J� and J* are defined by (2.11.6). (The first identity in (3.4.4) is
obvious, the second follows from the well known expression for the minors
of the inverse matrix.)

The action of { and @ on the polynomials Za and TJ was computed in
Proposition 2.11.1. Combining this result with (3.3.7) and (3.4.4), we dis-
cover another case where TJ (x) is a minor. Namely, for all 0�d<a<b�
r+1, we have

T[d+1, a] _ [b+1, r+1]=(T[1, d] _ [a+1, b]){=(2[d+1, d+b&a] _ [b+1, r+1]){

=2[a+1, r+1]
[1, r+1&b] _ [r+2&d&b+a, r+1&d] . (3.4.5)

Proposition 2.1.7 implies that the identities (3.4.4), in the form

(2J
I ){=2I*

J* , (2J
I ) @=2I�

J� ,
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as well as their corollary (3.4.5), remain valid for an arbitrary ground semi-
ring P. We will later show that (3.3.7) and (3.4.5) are the only two cases
where TJ coincides with some minor 2K

I (see Proposition 3.6.5).

3.5. The Multi-filtration in the Coordinate Ring of N

We have already mentioned three properties of the polynomials TJ

whose proof was postponed:

(i) Every TJ (x) is an irreducible polynomial in the matrix entries of x.

(ii) The polynomial TJ (x) is a minor of x if and only if J=[1, d] _

[a+1, b] or J=[d+1, a] _ [b+1, r+1] for some 0�d<a<b�r+1.

(iii) For every J and every normal ordering n of 6, the polynomial
T n

J(t) has nonnegative integer coefficients.

In this section, we introduce some additional structures in the coordinate
ring

A=Q[N]=Q[x12 , x13 , ..., xr, r+1],

following, for the most part, the paper [7], and specializing its pertinent
results at q=1. These structures will later be employed to prove (i)�(iii).
Although everything can be carried out in the case of a maximal unipotent
subgroup N of any semisimple group G, we shall only present the type Ar

case where G=SLr+1 .
Let :1 , ..., :r be the simple roots, and |1 , ..., |r the fundamental weights

of type Ar , in the standard notation [5]:

:i==i&=i+1 ,

|i= :
i

a=1

=a&
i

r+1
:

r+1

a=1

=a ,

where =1 , ..., =r+1 is the standard basis in Rr+1. The transition matrix
between simple roots and fundamental weights is the Cartan matrix. For
the type Ar ,

:i=&|i&1+2|i&|i+1

(from now on, we use the convention |0=|r+1=0). Let Q+ be the
additive semigroup generated by :1 , ..., :r , and P+ the additive semigroup
generated by |1 , ..., |r (thus the elements of P+ are the highest weights of
irreducible finite-dimensional representations of SLr+1). We will now intro-
duce a family of subspaces A(*, +, &)/A=Q[N] labelled by the triples of
elements of P+ .
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First, we note that A has a natural Q+-grading

A= �
# # Q+

A(#), (3.5.1)

where each variable xij has (multi-)degree

deg(xij)==i&=j=:i+:i+1+ } } } +:j&1 . (3.5.2)

The dimensions of homogeneous components are given by

dim(A(#))= p(#) (3.5.3)

where p(#) is the Kostant partition function, i.e., the number of ways to
express # as a sum of positive roots.

Second, we define the right and left infinitesimal translation operators Ei

and Ei*, acting in A by

(Ei f )(x)=
d
dt } t=0

f (x } (1+tei)),

(3.5.4)

(Ei* f )(x)=
d
dt } t=0

f ((1+tei) } x),

for i=1, ..., r. In the coordinate form, these are given by

Ej= :
j

i=1

xij
�

�xi, j+1

,

(3.5.5)

Ei*= :
r+1

j=i+1

xi+1, j
�

�xij
.

It is easy to check that, for all # # Q+ ,

Ei , Ei*: A(#) � A(#&:i). (3.5.6)

To illustrate the above concepts, we observe that

2J
I # A \:

i # I

=i& :
j # J

=j+ . (3.5.7)

A direct calculation shows that

Ej (2J
I )={2J _ [ j]&[ j+1]

0 ,
0,

if j+1 # J, j � J;
otherwise;

(3.5.8)

Ei*(2J
I )={2J

I _ [i+1]&[i] ,
0,

if i # I, i+1 � I;
otherwise.

(3.5.9)
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Note that, in the notation of (2.4.6), formula (3.5.8) can be rewritten as

Ej (2J
I )=2uj (J)

I . (3.5.10)

It follows that the restrictions of the Ej onto the linear span of the minors
provide a representation of the nil�Temperley�Lieb algebra.

Now let *, +, & # P+ , and assume that

*=l1|1+ } } } +lr|r ,

&=n1|1+ } } } +nr|r .

We then define the vector subspace A(*, +, &)/A by

A(*, +, &)=[ f # A(*&+*+&): (E i*) li+1 f =E ni+1
i f =0

for i=1, ..., r], (3.5.11)

where +*=&w0 +, i.e., + [ +* is a linear map such that

|i*=|r+1&i . (3.5.12)

This definition readily implies that the subspaces A(*, +, &) form a multi-
plicative multi-filtration in A, in the following sense:

A(*, +, &) } A(*$, +$, &$)/A(*+*$, +++$, &+&$). (3.5.13)

Also, for any ., � # P+ , we have

A(*, +, &)/A(*+., ++.*+�*, &+�). (3.5.14)

Motivated by (3.5.14), we introduce a partial order on the semigroup P3
+

by setting

(*, +, &)�(*+., ++.*+�*, &+�).

The following proposition follows immediately from the definitions.

3.5.1. Proposition. 1. For every nonzero homogeneous polynomial
f # A, there is a unique minimal triple (*, +, &) such that f # A(*, +, &).
Namely, the components li of * and ni of & are given by

li=li ( f )=max[l: (E i*) l f {0],
(3.5.15)

ni=ni ( f )=max[n: E n
i f {0].
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2. If nonzero homogeneous polynomials f and f $ have minimal triples
(*, +, &) and (*$, +$, &$), respectively, then the minimal triple for the product
ff $ is (*+*$, +++$, &+&$).

Let us determine the minimal triple (*, +, &) for a minor 2J
I . For a subset

J written in the form (3.3.1), we define the weights :(J), ;(J) # P+ by

:(J)=|a1
+|a2

+ } } } +|as ,
(3.5.16)

;(J)=|b1
+|b2

+ } } } +|bs .

The following proposition is a straightforward consequence of (3.5.7)�
(3.5.9).

3.5.2. Proposition. Let (I, J) be a reduced admissible pair of subsets of
[1, r+1] (see Section 2.4). Then

2J
I # A(;(I ), :(I )*+;(J)*, :(J)), (3.5.17)

and the triple (;(I ), :(I )*+;(J)*, :(J)) is minimal for 2J
I . In particular, for

any subset J of cardinality |J |, we have

2J # A(| |J | , ;(J)*, :(J)), (3.5.18)

and the triple (| |J | , ;(J)*, :(J)) is minimal for 2J unless J=[1, b] for some b.

Note that the case J=[1, b] in the last proposition is indeed an excep-
tion, since 2[1, b]=1 # A(0, 0, 0).

To establish more properties of the subspaces A(*, +, &), we recall their
well-known representation-theoretic interpretation (cf., e.g., [7, 32]). For
* # P+ , let

V*= :
+, &

A(*, +, &)=,
i

Ker(E i*) li+1. (3.5.19)

Then there is a unique representation of the group G=SLr+1 in V* such
that the generators ei of Lie (N) act as the operators Ei given by (3.5.4).
This representation is irreducible with highest weight * (in this realization,
the highest vector in V* is the function 1 # A). Now for any +, & # P+, the
space A(*, +, &) regarded as a subspace in V* , consists of all vectors v # V*

of weight +*&& such that eni+1
i v=0 for i=1, ..., r.

Let us consider this interpretation in the case when *=wl is a fundamen-
tal weight. Then V* is isomorphic to � l Cr+1, so all the weight subspaces
of V* are one-dimensional, and correspond to the subsets J/[1, r+1] of
size l. Using (3.5.18), we obtain the following result.
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3.5.3. Proposition. The space A(|l , +, &) is zero unless +=;(J)* and
&=:(J) for some subset J/[1, r+1] of size l. For any J, the space A(| |J | ,
;(J)*, :(J)), is one-dimensional and is spanned by the flag minor 2J.

In a special case of Proposition 3.5.3, we see that the polynomial
Za=2[a+1, r+1] spans the one-dimensional subspace A(|r+1&a , 0, |a).
We will need a little more general statement. Assuming, as before, that
*=l1|1+ } } } +lr|r # P+ , let us define

Z*= `
r

i=1

Zli
i . (3.5.20)

3.5.4. Proposition. For every * # P+ , the space A(*, 0, **) is one-
dimensional and is spanned by Z**. If &{**, then A(*, 0, &)=0.

Proof. The above representation-theoretic interpretation of A(*, +, &)
implies that the subspace A(*, 0, &) consists of the lowest vectors of weight
&& in V* . It is well known, however, that V* has a unique lowest vector
(up to scalar multiples), and its weight is &**. Therefore, A(*, 0, &)=0
unless &=**, and dim A(*, , 0, **)=1. It is also clear that Z** belongs to
A(*, 0, **), and hence generates this subspace. K

3.6. The S3_Z�2Z Symmetry

The filtration (A(*, +, &)) exhibits a remarkable symmetry which is a
consequence of the following classical result. There is a canonical (up to a
scalar multiple) isomorphism of vector spaces between A(*, +, &) and the
space of G-invariants in the tensor product V* �V+ �V& :

A(*, +, &)$(V* �V+ �V&)G (3.6.1)

(in the case under consideration, G=SLr+1). In particular, the dimension
of A(*, +, &) is given by the Littlewood�Richardson rule.

As a consequence of (3.6.1), the space A(*, +, &) is isomorphic to A(*$, +$,
&$) whenever the triple (*$, +$, &$) is obtained from (*, +, &) by a permuta-
tion. Furthermore, since the dual representation (V*)* is isomorphic to V**

(as before, ** is defined via (3.5.12)), we have an isomorphism

A(*, +, &)$A(**, +*, &*).

All these isomorphisms can be chosen in a coherent way, as follows. Con-
sider the group of transformations of the set of triples (*, +, &) # P3

+ generated
by all permutations of (*, +, &), together with the transformation (*, +, &) [
(**, +*, &*). We will denote this group simply by S3_Z�2Z. It is not hard
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to see that one can associate with each _ # S3_Z�2Z and each triple
(*, +, &) # P3

+ an isomorphism

_: A(*, +, &) � A(_(*, +, &)) (3.6.2)

(denoted by the same symbol _) in such a way that the isomorphism

__$: A(*, +, &) � A(__$(*, +, &))

is equal to the composition

A(*, +, &) w�_$ A(_$(*, +, &)) w�_ A(__$(*, +, &)).

These symmetries were discussed in [32] and, in the quantum group setting,
in [7]. Let us give explicit formulas for the action of the generators of
S3 _Z�2Z.

Once again, let us look at the involutive anti-automorphisms { and @ of
the group N, given by (3.4.2). As in Sections 2.11 and 3.4, we denote by
f [ f { and f [ f @ the involutive automorphisms of A=Q[N] given by

f {(x)= f ({(x)), f @(x)= f (@(x)). (3.6.3)

3.6.1. Proposition. For every *, +, & # P+ the restriction of f [ f { to
A(*, +, &) is an isomorphism A(*, +, &) � A(&*, +*, **) while the restriction
of f [ f @ to A(*, +, &) is an isomorphism A(*, +, &) � A(&, +, *).

Proof. We will prove the statement for {, the proof for @ being totally
similar. Since { is an automorphism of A sending each xij to xr+2& j, r+2&i ,
it follows from (3.5.2) that { maps each homogeneous component A(#) to
A(#*). On the other hand, combining the definition (3.5.4) of the operators
Ei and Ei* with (3.4.3), and with the fact that { is an anti-automorphism
of N, we conclude that

Ei ( f {)=(E*r+1&i f ){, Ei*( f {)=(Er+1&i f ){ ( f # A, i=1, ..., r).

(3.6.4)

Using the definition (3.5.11), we see that sends each subspace A(*, +, &) to
A(&*, +*, **). Since { is an involution, the map {: A(*, +, &) � A(&*, +*, **)
is an isomorphism, as desired. K

According to this proposition, the isomorphism (3.6.2) corresponding to
an element _: (*, +, &) [ (&*, +*, **) (resp. _: (*, +, &) [ (&, +, *)) of the
group S3_Z�2Z, can be chosen as the restriction of the map f [ f { (resp.
f [ f @). The elements (*, +, &) [ (&*, +*, **) and (*, +, &) [ (&, +, *) generate
a subgroup isomorphic to Z�2Z_Z�2Z. Thus, to define the action of the
whole group S3 _Z�2Z, we need one more generator. We choose this
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generator to be the transformation (*, +, &) [ (*, &, +), so we need to
construct the corresponding isomorphism A(*, +, &) [ A(*, &, +) for any
triple (*, +, &). This isomorphism will be of special importance for us.

Let x [ '(x) be a birational automorphism of N given by

'(x)=[xw&1
0 ]+ (3.6.5)

(cf. (3.1.1)). An easy check shows that ' is an involution. Let f [ f ' be the
corresponding involutive automorphism of the field of rational functions
Q(N):

f '(x)= f ('(x)). (3.6.6)

For f # Q(N) and * # P+ , we set

f '[*](x)=Z**(x) f ('(x)) (3.6.7)

(cf. (3.5.20)). The following proposition was given in [32].

3.6.2. Proposition. For every *, +, & # P+ , the restriction of f [ f '[*]

to A(*, +, &) is an isomorphism A(*, +, &) � A(*, &, +).

In accordance with this proposition, we choose the restriction of f [ f '[*]

as an isomorphism (3.6.2) corresponding to the transformation _: (*, +, &) [
(*, &, +). It is straightforward to check that the isomorphisms given by the
last two propositions satisfy the relations between the corresponding gener-
ators of S3_Z�2Z. Thus, we can unambigiously define the isomorphism
(3.6.2) for all _ # S3_Z�2Z.

As an application of Propositions 3.6.1 and 3.6.2, let us determine the
minimal triple (*, +, &) for an arbitrary polynomial TJ , J/[1, r+1].
In view of (2.9.7), we may assume that J is not of the form [1, a] or
[a+1, r+1].

3.6.3. Proposition. Let J be not of the form [1, a] or [a+1, r+1].
Then the minimal triple for TJ is (:(J)*, |r+1&|J | , ;(J)). The space A(:(J)*,
|r+1&|J | , ;(J)) is one-dimensional and is spanned by TJ .

Proof. Comparing (3.4.2) and (3.6.5) with (3.1.1), we see that the
matrix y in (3.1.1) is given by y={('(x)). In view of (3.3.4) and (3.5.20),
the formula (3.6.7) can be written as

TJ=((2J){)'[:(J)*]. (3.6.8)
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In other words, TJ is obtained from 2J by the following composition of
isomorphisms of the type (3.6.2):

A(| |J | , ;(J)*, :(J)) w�{ A(:(J)*, ;(J), |r+1&|J | )

www�'[:(J)*] A(:(J)*, |r+1&|J | , ;(J)).

By Proposition 3.5.3, TJ spans A(:(J)*, |r+1&|J | , ;(J)).
It remains to show that the triple (:(J)*, |r+1&|J | , ;(J)) is minimal

for TJ . Since the middle component is a fundamental weight, the only
other possibilities for the minimal triple of TJ are (:(J)*&| |J | , 0, ;(J)) or
(:(J)*, 0, ;(J)&| |J | ). By Proposition 3.5.4, in the first case we would have
had :(J)=;(J)+|r+1&|J | , while in the second case we would have had
;(J)=:(J)+| |J | . But each of these equalities is impossible unless J is of
the form [1, a] or [a+1, r+1], since both weights :(J) and ;(J) are
nonzero and do not have common fundamental weights in their expansions
(see (3.5.16)). K

The last proposition supplies us with the tools needed to prove
statements (i) and (ii) from the first paragraph of Section 3.5.

3.6.4. Proposition. If J is not of the form [1, a] or [a+1, r+1], then
TJ is a non-constant irreducible polynomial in the matrix entries xij .

Proof. Suppose TJ= ff $ where f and f $ are non-constant polynomials.
Since TJ is homogeneous, so are f and f $. By Propositions 3.5.1.2 and 3.6.3,
the sum of minimal triples for f and f $ is equal to (:(J)*, |r+1&|J | , ;(J)).
Hence one of these two minimal triples has the middle component 0.
By Proposition 3.5.4, this triple has the form (&*, 0, &) for some nonzero
& # P+. It follows that both :(J)&& and ;(J)&& belong to P+. But this
is impossible by the argument already used in the proof of Proposition
3.6.3: :(J) and ;(J) do not have common fundamental weights in their
expansions.

3.6.5. Proposition. The polynomial TJ (x) is a minor of x if and only if
J=[1, d] _ [a+1, b] or J=[d+1, a] _ [b+1, r+1] for some 0�d<
a<b�r+1.

Proof. The ``if '' part follows from (3.3.7) and (3.4.5). To prove the ``only
if '' part, let us introduce some terminology. For a subset J/[1, r+1], we
define the complexity c(J) by

c(J)=c(J; 1, r+1)=max(s(J), s(J� ))&1, (3.6.9)
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where s(J) is the number of connected components of J (cf. (2.10.1)). Thus,
the sets of complexity 0 are exactly intervals of the form [1, a] or [a+1,
r+1]. The sets of complexity 1 are the intervals [a+1, b] with 1�a<
b�r, and also the sets with two components, at least one of which is an
interval of the form [1, a] or [a+1, r+1]. Using this terminology, we can
reformulate the ``only if '' part as follows: if TJ is equal to some minor 2K

I

then c(J)�1.
For a weight *=l1|1+ } } } +lr|r # P+ , let us denote C(*) :=l1+ } } } +

lr . The following properties are obvious:

C(*++)=C(*)+C(+), C(**)=C(*). (3.6.10)

An easy inspection shows that, for any J/[1, r+1], one has

c(J)=min(C(:(J)), C(;(J))) (3.6.11)

and

|C(:(J))&C(;(J))|�1. (3.6.12)

Now suppose that TJ=2K
I for some reduced admissible pair (I, K).

Comparing the minimal triples for TJ and 2K
I given by Propositions 3.6.3

and 3.5.2, we obtain:

:(J)*=;(I ), | |J |=:(I )+;(K), ;(J)=:(K). (3.6.13)

It follows that C(:(I))+C(;(K))=C(| |J|)=1, hence min(C(:(I)), C(;(K)))=0.
Therefore, we have

c(J)=min(C(:(J)), C(;(J)))

=min(C(;(I )), C(:(K)))

�min(C(:(I )), C(;(K)))+1

=1,

as required. K

We have already shown in Proposition 3.4.1 that the anti-automorphisms
{ and @ of N preserve the set N>0 of totally positive matrices. In conclusion
of this section, let us show that the same is true for the birational map '
given by (3.6.5).

3.6.6. Proposition. The birational map ' restricts to a bijection N>0 �
N>0.

116 BERENSTEIN, FOMIN, AND ZELEVINSKY



File: 607J I56769 . By:BV . Date:26:08:96 . Time:13:45 LOP8M. V8.0. Page 01:01
Codes: 3085 Signs: 2235 . Length: 45 pic 0 pts, 190 mm

Proof. We have already observed in the proof of Proposition 3.6.3
above, that the composition { b ' coincides with the transformation x [ y
given by (3.1.1). In other words, we have '(x)={( y). The fact that ' preserves
N>0 follows now from Proposition 3.4.1 combined with Theorem 3.2.5. K

3.7. Dual Canonical Basis and Positivity Theorem

In this section we will finally prove that polynomials T n
J have non-

negative coefficients. The proof will be based on the observation that all the
TJ belong to the dual canonical basis B* in the coordinate ring A=Q[N].
Let us recall the definition of B*. The algebra A is easily seen to be graded
dual to the universal enveloping algebra U(Lie(N)). By definition, the basis
B* in A is dual to the basis obtained via the specialization q=1 from
Lusztig's canonical basis B in the q-deformation U+ of U(Lie(N)). The
q-analogue of B* was studied in [7, 8]. Let us collect together the proper-
ties of B* that we will need in what follows. We will use the notation E (k)

for the divided power Ek�k!.

3.7.1. Proposition. 1. The dual canonical basis B* contains the minors
2J

I for all reduced admissible pairs (I, J); in particular, 1 # B*.

2. For every triple of weights (*, +, &), the set B* & A(*, +, &) is a basis
of A(*, +, &).

3. For every f # B* & A(*, +, &), the polynomials f {, f @ and f '[*] (cf.
Propositions 3.6.1 and 3.6.2) also lie in B*. Therefore, B* is preserved by all
isomorphisms of type (3.6.2).

4. Every divided power E (k)
i , k�0 sends any element f # B* to a linear

combination of elements of B* with nonnegative integer coefficients.

All these statements are obtained by specializing at q=1 the corre-
sponding results in [7, 8]: see Proposition 1.3 and Theorem 1.4 in [8],
Propositions 6.1 and 7.1 in [7]. As mentioned in [7, 8], statements 2�4 are
consequences of more general results due to G. Lusztig and M. Kashiwara.

3.7.2. Corollary. All polynomials TJ belong to B*.

Proof. Follows from (3.6.8) and parts 1 and 3 of Proposition 3.7.1. K

Using Corollary 3.7.2 and Proposition 3.6.3, we obtain the following
characterization of the polynomials TJ .

3.7.3. Corollary. For every J not of the form [1, a] or [a+1, r+1],
the polynomial TJ is the unique element of B* in A(:(J)*, |r+1&|J | , ;(J)).
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Now let us turn to the nonnegativity property. Instead of the T n
J , we will

work with the polynomials T h
J given by (1.16) (recall that T h

J only differs
from T n

J by renaming the variables, as described in Section 2.3). More
generally, for any f # A=Q[N] and any reduced word h=(h1 , ..., hm) #
R(w0), let us denote by f h(t1 , ..., tm) the polynomial

f h(t1 , ..., tm)= f ((1+t1 eh1
) } } } (1+tmehm)). (3.7.1)

3.7.4. Theorem. For every element f of B*, the corresponding poly-
nomial f h(t1 , ..., tm) has nonnegative integer coefficients In particular, all
polynomials T h

J and hence all the T n
J have nonnegative integer coefficients.

Proof. We will deduce our statement from a general formula that
expresses the coefficients of f h in terms of the divided powers E (a)

i of the
infinitesimal right translation operators Ei defined in (3.5.4). Note that, in
view of (3.5.6), the operator E (a1)

h1
} } } E (am)

hm
sends a homogeneous component

A(#) to A(#&�m
k=1 ak:hk). In particular, if the ak satisfy

:
m

k=1

ak :hk=#, (3.7.2)

then, for each f # A(#), the element E (a1)
h1

} } } E (am)
hm

( f ) lies in A(0), i.e., is a
rational constant.

3.7.5. Lemma. For every homogeneous polynomial f # A(#), the polyno-
mial f h is given by

f h(t1 , ..., tm)= :
a1, ..., am

E (a1)
h1

} } } E (am)
hm

( f ) } ta1
1 } } } tam

m , (3.7.3)

where the sum is over all sequences (a1 , ..., am) of nonnegative integers
satisfying (3.7.2).

This lemma is an immediate consequence of the following observation:
if we regard ei as an element of the Lie algebra Lie(N), and denote by
exp: Lie(N) � N the usual exponential map, then exp(tei)=1+tei # N for
any scalar t.

Theorem 3.7.4 now follows from Lemma 3.7.5 combined with Proposi-
tion 3.7.1, parts 1 and 4. K

3.7.6. Remark. In the case when f is a minor 2J
I , formula (3.7.3) com-

bined with (3.5.10) provides another proof of (2.4.8). Let us also reiterate
that, in view of Proposition 2.1.7, the polynomials T n

J for an arbitrary
ground semiring P are the same as in the special case P=R>0 considered
above.
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4. PIECEWISE-LINEAR MINIMIZATION FORMULAS

In this chapter, we will apply the formula (2.9.11) for the transition maps
to the case when the ground semifield K is the tropical semifield (Z, min, +)
of Example 2.1.2. Recall that the Lusztig variety Lr(P) associated to the
tropical semiring P=(Z+ , min, +) is identified with the canonical basis B,
so the transition maps relate different parametrizations of B.

4.1. Polynomials over the Tropical Semifield

In view of Theorem 3.7.4 and Remark 3.7.6, the functions T n
J appearing

in (2.9.11) are polynomials in the variables tij , with nonnegative integer
coefficients. We will begin by providing a simple general description of the
structure of such polynomials over the tropical semifield. Roughly speaking,
the evaluation of a (Laurent) polynomial f over the tropical semifield only
depends on the Newton polytope of f.

To be more precise, let f # Z+[z\1
1 , ..., z\1

m ] be a Laurent polynomial in
the variables z1 , ..., zm , with nonnegative integer coefficients. Let us write f
as a sum of monomials:

f =:
!

c!z!= :
!1 , ..., !m

c!1 , ..., !m
z!1

1 } } } z!m
m . (4.1.1)

The exponent vectors !=(!1 , ..., !m) # Zm appearing in (4.1.1) can be
viewed as lattice points in the Euclidean space Rm. The Newton polytope of
f is defined by

N( f )=Conv[!: c! {0], (4.1.2)

that is, N( f ) is the convex hull of the exponent vectors of all monomials
occurring in f. Thus, vertices of the Newton polytope N( f ) correspond to
the extremal monomials of f. We denote the set of vertices of N( f ) by
Ver( f ).

4.1.1. Proposition. If the variables z1 , ..., zm take values in the tropical
semifield, then the evaluation of any Laurent polynomial f # Z+[z\1

1 , ...,
z\1

m ] can be written as

f (z1 , ..., zm)=min[!1z1+ } } } +!mzm : (!1 , ..., !m) # Ver( f )], (4.1.3)

where, in the right-hand side, we use the ordinary addition and multiplication.

Proof. Since addition in the tropical semifield Z is idempotent, replacing
all nonzero coefficients c! of f by 1 will not affect the evaluation of f over
Z. Thus, we have

f (z1 , ..., zm)=min[!1z1+ } } } +!mzm : c!1, ..., !m
{0]. (4.1.4)
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It remains to notice that each linear form !1z1+ } } } +!mzm in (4.1.4) is a
convex linear combination of the forms corresponding to the vertices of N( f ).

K

4.1.2. Remark. The Newton polytope of the product of two polyno-
mials is equal to the Minkowski sum of their Newton polytopes. One can
introduce a semiring structure in the set S of lattice polytopes in Rm by
letting multiplication in S be the Minkowski addition, and letting the sum
of two polytopes in S be the convex hull of their union. By virtue of
Proposition 4.1.1, the semiring S is isomorphic to the semiring T of those
piecewise-linear functions in m variables which can be written as minima of
linear forms having integer coefficients. In T, the semiring operations are
the ``tropical'' ones, i.e., addition is minimum and multiplication is the
usual addition.

In view of Proposition 4.1.1 and (2.9.9), we can rewrite (2.9.11) as
follows.

4.1.3. Theorem. The transition maps over the tropical semifield are
given by

(Rn$
n (t)) ij=$i+1, j :

a�i<b

tab+min {: !abtab : (!ab) # Ver(T n
L$T

n
L$ij)=

&min {: !abtab : (!ab) # Ver(T n
L$i T

n
L$j)= , (4.15)

where L$=Ln$(i, j) (see (2.5.1)).

In the rest of this chapter we will discuss various applications of this
theorem.

4.2. Multisegment Duality
In Theorem 2.8.2, we gave an explicit formula for the transition map Rn

n0

from the normal ordering n0 to an arbitrary normal ordering n, where n0

corresponds to the lexicographically minimal reduced word h0=(1, 2, 1, 3,
2, 1, ..., r, r&1, ..., 1) (see (2.4.13)). Translating this result into the ``tropical
language'' yields the following formula.

4.2.1. Theorem. The transition map Rn
n0 over the tropical semifield is

given by

Rn
n0(t)) ij= :

[i, j]/[a, b]

e(Lij; a; b) tab

+min { :
( p, q) # E(L)

tapq , apq+q& p : (apq) # Tab(L)=

120 BERENSTEIN, FOMIN, AND ZELEVINSKY



File: 607J I56773 . By:BV . Date:26:08:96 . Time:13:45 LOP8M. V8.0. Page 01:01
Codes: 2308 Signs: 1098 . Length: 45 pic 0 pts, 190 mm

+min { :
( p, q) # E(Lij)

tapq , apq+q& p : (apq) # Tab(Lij)=
&min { :

( p, q) # E(Li)

tapq , apq+q&p : (apq) # Tab(Li)=
&min { :

( p, q) # E(Lj)

tapq , apq+q&p : (apq) # Tab(Lj)= , (4.2.1)

where Tab(J) stands for the set of all J-tableaux (see Example 2.6.6), E(J)
denotes the essential set of J (see (2.8.8)) and L=Ln(i, j).

Let us apply this theorem in the special case when n is the normal
ordering n1=n(h1) corresponding to the lexicographically maximal reduced
word

h1=(r, r&1, r, r&2, r&1, r, ..., 1, 2, ..., r). (4.2.2)

Since h1=(h0)* (see (2.11.2)), we have

n1=(n0)*=((1, 2), (1, 3), (2, 3), ..., (1, r+1), (2, r+1), ..., (r, r+1)).

(4.2.3)

4.2.2. Theorem. The transition map Rn1

n0 over the tropical semifield is
given by

(Rn1

n0(t)) ij

=min { :
( p, q) # [1, i&1]_[1, r+1&j]

t{( p, q), {( p, q)+i&1& p+q : { # GYTi&1, j=
+min { :

( p, q) # [1, i]_[1, r+2& j]

t{( p, q), {( p, q)+i& p+q : { # GYTi, j&1=
&min { :

( p, q) # [1, i]_[1, r+1& j]

t{( p, q), {( p, q)+i& p+q : { # GYTi, j=
&min { :

( p, q) # [1, i&1]_[1, r+2& j]

t{( p, q), {( p, q)+i&1& p+q : { # GYTi&1, j&1= ,

(4.2.4)

where GYTi, j stands for the set of all (generalized, or semi-standard ) Young
tableaux {: [1, i]_[1, r+1& j] � [1, j] (see Example 2.8.3).
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Proof. Combining (2.1.8) and (2.11.9) with the description of the
chamber sets for n0 given by (2.8.4), we obtain:

Ln(i, j)=[i, j]=[1, i&1] _ [ j+1, r+1]. (4.2.5)

Remembering (2.8.12), it is easy to see that in our case the first summand
in (4.2.1) is equal to

$i+1, j :
[i, j]/[a, b]

tab . (4.2.6)

As for the other four summands, we transform them as in Example 2.8.3,
which leads to (4.2.4) (note that if j=i+1, then the summand in (4.2.1)
that corresponds to Lij disappears and gets replaced by the expression
(4.2.6)). K

4.2.3. Remark. Formula (4.2.4) practically coincides with the expres-
sion for the so-called multisegment duality involution given in [24, (1.4),
(1.9)]. The only difference is that in [24], positive roots of type Ar were
not labeled by the elements of our index set 6r=[(i, j): 1�i< j�r+1];
rather, the set [(i, j): 1�i� j�r] was used which can be obtained from
6r by the shift (i, j) [ (i, j&1). Thus, the transition map Rn1

n0 can be iden-
tified with the multisegment duality. This fact, already mentioned in [7,
24], is a special case of a general result [23, Theorem 2.0] that relates the
transition maps to the geometry of representations of quivers. (We will
discuss this connection in more detail in Section 4.4.) Combining this
general result with Theorem 4.2.2 yields a new proof of the main theorem
in [24].

A fundamental property of the multisegment duality is that it is an
involution (which is not obvious at all from (4.2.4). We now show that this
fact is an easy consequence of the general symmetry properties of the tran-
sition maps given in Section 2.11.

4.2.4. Proposition. The transformation Rn1

n0 : P6 � P6 is an involution,
and commutes with the involution t � t* given by (2.11.3).

Proof. We start with an observation that, in view of (2.11.11), (4.2.3)
and (2.11.13), for every n we have

Rn
n1=Rn

(n0)*
=Rn�

(n0)*=Rn�
n0 . (4.2.7)

Setting n=(n0)*=n1 in (4.2.7), we obtain

Rn0

n1=Rn
n1=Rn�

n0=Rn1

n0 ,

which proves that Rn1

n0 is an involution. The fact that Rn1

n0 commutes with
t � t* follows by setting n=n1 in (2.11.12). K
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4.2.5. Remark. In view of (4.2.7), an explicit formula for Rn
n1 for an

arbitrary normal ordering n can be obtained from (4.2.1), if we replace n
by n� .

4.3. Nested Normal Orderings

In this section, we consider a family of special reduced words and normal
orderings that we call nested. This family was introduced and studied in
[7]; it contains the orderings n0 and n1 and, in a certain sense, interpolates
between them.

For every interval [c, d]/[1, r+1] with c<d, let S[c, d] denote the
group of all permutations of [c, d], and let w0[c, d] be the maximal
element of S[c, d] ; in particular, the whole group Sr+1 and its maximal
element w0 receive the notation S[1, r+1] and w0[1, r+1]. An easy check
shows that

w0[c, d]=w0[c, d&1] sd&1sd&2 } } } sc

=w0[c+1, d] scsc+1 } } } sd&1 . (4.3.1)

Using (4.3.1), we give the following recursive definition: a nested reduced
word for w0[c, d] is either a nested reduced word for w0[c, d&1] followed
by d&1, d&2, ..., c, or a nested reduced word for w0[c+1, d] followed by
c, c+1, ..., d&1; the only reduced word (c) for w0[c, c+1]=sc is nested
by definition.

A normal ordering of 6 corresponding to a nested reduced word will
also be called nested. Nested normal orderings can be defined recursively
as follows. Let 6[c, d] be the set of pairs (i, j) with c�i< j�d. Then a
nested normal ordering of 6[c, d] is either a nested normal ordering of
6[c+1, d] followed by (c, d ), (c, d&1), ..., (c, c+1), or a nested normal
ordering of 6 [c, d&1] followed by (c, d ), (c+1, d ), ..., (d&1, d ). Unraveling
this definition, we see that nested normal orderings of 6 are in a bijective
correspondence with nested sequences, or flags, of intervals [c1 , d1]/[c2 ,
d2]/ } } } /[cr , dr]=[1, r+1], where dk&ck=k for k=1, ..., r. We will
encode these flags by their sign vectors ==(=2 , ..., =r), where each =k is either
+ or &; we set

=k={+,
&,

if [ck , dk]=[ck&1 , dk&1+1]
if [ck , dk]=[ck&1&1, dk&1].

(4.3.2)

The nested reduced word and normal ordering with the sign vector = will
be denoted by h(=) and n(=), respectively. The ordering n(=) is thus the con-
catenation n(=)=(n(1), ..., n(r)), where

n(k)={(ck , dk), (ck+1, dk), ..., (dk&1, dk)
(ck , dk), (ck , dk&1), ..., (ck , ck+1)

if =k=+
if =k=&.

(4.3.3)
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For a given r, there are 2r&1 different nested normal orderings. For instance,
if r=2, then both reduced words for w0 and the corresponding normal
orderings are nested:

h(&)=(1, 2, 1), n(&)=(2, 3), (1, 3), (1, 2);

h(+)=(2, 1, 2), n(+)=(1, 2), (1, 3), (2, 3).

For r=3, the nested reduced words and normal orderings are:

h(&, &)=(1, 2, 1, 3, 2, 1),

n(&, &)=(3, 4), (2, 4), (2, 3), (1, 4), (1, 3), (1, 2);

h(&, +)=(2, 3, 2, 1, 2, 3),

n(&, +)=(2, 3), (1, 3), (1, 2), (1, 4), (2, 4), (3, 4);

h(+, &)=(2, 1, 2, 3, 2, 1),

n(+, &)=(2, 3), (2, 4), (3, 4), (1, 4), (1, 3), (1, 2);

h(+, +)=(3, 2, 3, 1, 2, 3),

n(+, +)=(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4).

Note that, for arbitrary r, the lexicographically minimal and maximal
reduced words and the corresponding normal orderings are nested:

n0=n(&, &, ..., &),
(4.3.4)

n1=n(+, +, ..., +).

We will say that a pair (i, j) # 6 is =-positive if it lies in a segment n(k)

of the normal ordering n(=) (see (4.3.3)), and =k=+. In other words, (i, j)
is =-positive if

ck�i< j=dk , =k=+; (4.3.5)

similarly, (i, j) # 6 is =-negative if

ck=i< j�dk , =k=&. (4.3.6)

The following proposition gives a description of all chamber sets for n(=);
its proof is straightforward.

4.3.1. Proposition. For any sign vector = and any (i, j) # 6, we have

Ln(=)(i, j)={[ck , i&1] _ [ j+1, r+1],
[i+1, j&1] _ [dk+1, r+1],

if (i, j) is =-positive;
if (i, j) is =-negative.

(4.3.7)
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In particular, taking ==(&, &, ..., &) or ==(+, +, ..., +) we recover
the descriptions of the chamber sets of n0 and n1 given by (2.8.4) and
(4.2.5):

L n0
(i, j)=[i+1, j&1],

L n1
(i, j)=[1, i&1] _ [ j+1, r+1].

4.3.2. Corollary. The transition map from an arbitrary normal
ordering n to the nested normal ordering n(=) is given by the following
formulas: if (i, j) is =-positive (see (4.3.5)), then

(Rn(=)
n (t)) ij

=Zi (t)$i+1, j

(2[i, r+1]
[1, r+1& j] _ [r+2&ck& j+i, r+2&ck]) n (t)

_(2[i+1, r+1]
[1, r+2& j] _ [r+4&ck& j+i, r+2&ck]) n (t)

(2[i+1, r+1]
[1, r+1& j] _ [r+3&ck& j+i, r+2&ck]) n (t)

_(2[i, r+1]
[1, r+2& j] _ [r+3&ck& j+i, r+2&ck]) n (t)

; (4.3.8)

if (i, j) is =-negative (see (4.3.6)), then

(Rn(=)
n (t)) ij

=Zi (t)$i+1, j

(2[ j, r+1]
[1, r+1&dk] _ [r+1&dk+j&i, r+1&i]) n (t)

_(2[ j+1, r+1]
[1, r+1&dk] _ [r+3&dk+j&i, r+2&i]) n (t)

(2[ j, r+1]
[1, r+1&dk] _ [r+2&dk+j&i, r+2&i]) n (t)

_(2[ j+1, r+1]
[1, r+1&dk] _ [r+2&dk+j&i, r+1&i]) n (t)

. (4.3.9)

Proof. Substitute (4.3.7) into (2.9.11), and use (3.4.5). K

In the special case ==(&, &, ..., &), (4.3.9) specializes to the formula
(2.4.14) for Rn0

n .
Formulas (4.3.8)�(4.3.9) are indeed explicit, since each factor (2J

I ) n (t) is
given by the combinatorial expression (2.4.10), and Zi (t) is given by
(2.9.9). Recall that (2.4.10) is stated in terms of families of vertex-disjoint
paths in the graph 1(n). We will now show that, if n is also a nested
ordering, then this combinatorial expression can be translated into a more
traditional language of tableaux of a certain kind. While working with par-
titions, Young diagrams and tableaux, we will use the terminology and
notation of [31]. We will identify a partition *=(*1�*2� } } } �*s�0)
with its diagram

*=[( p, q) # Z2: p # [1, s], q # [1, *i]].
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We will view the first component p of a point (or box) v=( p, q) # * as the
row index, and the second component as the column index; thus * will
have rows of length *1 , ..., *s . For v=( p, q), we define

d(v)=r+1+ p&q. (4.3.10)

The values of the function v [ d(v) for the boxes v contained in the rectan-
gular diagram (r+1)r with r rows and r+1 columns are shown below, for
r=4:

5 4 3 2 1
6 5 4 3 2
7 6 5 4 3
8 7 6 5 4

Now let * and + be two partitions such that +/*/(r+1)r. Let
==(=2 , ..., =r) be any sign vector, and [c1 , d1]/[c2 , d2]/ } } } /[cr , dr]=
[1, r+1] be the flag of intervals related to = via (4.3.2). By an =-tableau of
shape *�+ we will mean an increasing sequence of partitions +=*(0)/
*(1)/ } } } /*(r)=* satisfying the following two conditions:

(1) If =k=+, then *(k)&*(k&1) is a horizontal strip, i.e., contains at
most one box in each column; if =k=&, then *(k)&*(k&1) is a vertical strip,
i.e., contains at most one box in each row.

(2) For any k=1, ..., r, and any box v # *(k)&*(k&1), we have

ck�d(v)<dk . (4.3.11)

An =-tableau of shape *�+ can be identified with a function {: *&+ � [1, r]
given by

{(v)=min[k: v # *(k)];

equivalently, {(v)=k for v # *(k)&*(k&1). We call k the entry in the box v
of a tableau {. Note that (4.3.11) implies that all entries of an =-tableau are
positive integers �r. It follows that the shape *&+ of such a tableau
should be contained inside the staircase

which has r columns and r rows, and whose upper-leftmost box is (1, 2).
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For a box v with the entry k in an =-tableau {, let us define

(i({, v), j({, v))={(ck+dk&1&d(v), dk),
(ck , ck+dk&d(v)),

if =k=+;
if =k=&.

(4.3.12)

The above conditions (1) and (2) imply that for a fixed { the corre-
spondence v [ (i({, v), j({, v)) is an injective mapping *&+ � 6.

4.3.3. Example. Let ==(+, +, ..., +). Then ck=1 and dk=k+1 for
k=1, ..., r, so the definition of an =-tableau can be restated as follows: this
is a (semi-standard) Young tableau { of shape *�+, with entries in [1, r],
such that {(v)�d(v) for any box v # *&+. Furthermore, (4.3.12) takes the
form

(i({, v), j({, v))=({(v)+1&d(v), {(v)+1). (4.3.13)

For example, for a tableau

2 2
4

of shape *�+=(5, 4)�(3, 3), the values i({, v) and j({, v) are shown below:

1 1 3 3

i({, v) 2 j({, v) 5

Now let

I=[i1>i2> } } } >is],

J=[ j1>j2> } } } >js]

be two subsets in [1, r+1] of the same cardinality, such that ik< jk for
k=1, ..., s. We associate to (I, J) a pair of partitions (+, *) by setting

+k=ik+k&1, *k=jk+k&1 (k=1, ..., s). (4.3.14)

For instance, the pair of sets I=[3, 2] and J=[5, 3] corresponds to the
shape *�+=(5, 4)�(3, 3) (see above). Equivalently, one could view *�+ as a
``skew shifted shape'' obtained by removing the shifted shape (see, e.g.,
[31]) with row lengths i1 , ..., is , from the shifted shape with row lengths
j1 , ..., js .
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4.3.4. Proposition. In the above notation, the polynomial (2J
I ) n(=), for

any sign vector =, is given by

(2J
I ) n(=) (t)=:

{

`
v # *&+

ti({, v), j({, v) , (4.3.15)

where the sum is over all =-tableaux { of shape *�+.

Proof. Direct inspection shows that, for n=n(=), the families of paths
that contribute to (2.4.10), are encoded by =-tableaux of shape *�+, so that
the summands in (2.4.10) become the monomials in (4.3.15). This is a
modification of the Gessel�Viennot argument [19]. We leave the details to
the reader. K

4.3.5. Example. Let us compute the polynomial T n1

[a+1, b] =
(2[b+1, r+1]

[b+1&a, r+1&a]) n1
(see Proposition 2.10.2). In view of (4.3.4) and

(4.3.14), this polynomial is given by (4.3.15) with *=(r+1)r+1&b, +=
(r+1&a)r+1&b, and ==(+, +, ..., +). Thus, *�+ is the rectangle [1, r+
1&b]_[r+2&a, r+1]. Using the description of =-tableaux given in
Example 4.3.3, we can rewrite (4.3.15) in this case as follows:

(2[b+1, r+1]
[b+1&a, r+1&a]) n1

(t)

=:
{

`
( p, q) # [1, r+1&b]_[r+2&a, r+1]

t{( p, q)&r& p+q, {( p, q)+1 , (4.3.16)

where the sum is over all Young tableaux {: [1, r+1&b]_[r+2&a,
r+1] � [1, r] such that {( p, q)>r+ p&q for all p, q. It is straightforward
to show that these tableaux { are in a bijective correspondence with
tableaux {$ # GYTa, b (see Theorem 4.2.2). Namely, the correspondence
{ [ {$ is given by

{( p, q)&r& p+q={$( p$, q$),

where ( p, q) and ( p$, q$) are related by

p$=q&r&1+a, q$= p.

Replacing { by {$ transforms (4.3.16) into the expression for the polynomial
Q[1, a] _ [b+1, r+1] given by (2.8.15). Thus, Proposition 4.3.4 implies that

T n1

[a+1, b]=(2[b+1, r+1]
[b+1&a, r+1&a]) n1

=Q[1, a] _ [b+1, r+1] .

This fact can also be derived from (2.10.4) and (2.11.7).
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4.3.6. Remark. Combining Corollary 4.3.2 and Proposition 4.3.4, we
can obtain an explicit formula similar to (4.2.4), for the transition map
(over the tropical semifield) between any two nested normal orderings.

4.4. Quivers and Boundary Pseudo-line Arrangements

In this section, we will show that our Theorem 4.2.1 can be used to
obtain another proof of the piecewise-linear minimization formula of
H. Knight in the geometry of quiver representations (see [23, Theorem
6.0]). Let us briefly recall some of the setup in [23]. A quiver (of type Ar)
is an orientation 0 of the Coxeter�Dynkin graph. Thus, 0 has vertices
labelled 1, ..., r, and each edge (h&1, h), for h=2, ..., r, is oriented one way
or another. In [23, Section 1], to any two quivers 0 and 0$ there was
associated a piecewise-linear bijection

90, 0$ : Z6r
+ � Z6r

+ .

We will not reproduce here the precise definition of this bijection; let us
only indicate that it relates two different labellings of irreducible compo-
nents of certain Lagrangian varieties associated with quiver representa-
tions. Theorem 2.0 in [23] asserts that 90, 0$ coincides with the transition
map Rn$

n over the tropical semiring, where the normal orderings n and n$
are related to the quivers 0 and 0$ in the way specified below.

If h # [1, r] is a sink of 0, then let sh0 denote the quiver obtained from
0 by reversing the arrows directed to h (thus making h into a source). We
will say that a normal ordering n of 6r is adapted to a quiver 0 if the
reduced word h=(h1 , ..., hm) # R(w0) corresponding to n has the following
property:

for k=1, ..., m, the vertex hk is a sink of the quiver shk+1
shk+2

} } } shm 0.

(4.4.1)

(In the terminology of [23, 28], this means that h*=(hm , ..., h1) is adapted
to 0.) For example, the normal ordering n=(23 24 13 14 34 12) is adapted
to the quiver

v �w v w� v (4.4.2)

of type A3 .
With the help of the symmetry property (2.11.11), Theorem 2.0 from

[23] can be reformulated as follows: if normal orderings n and n$ are
adapted to quivers 0 and 0$, respectively, then

90, 0$=Rn$
n . (4.4.3)
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The existence of a reduced word (hence, that of a normal ordering)
adapted to an arbitrary quiver was proved in [28, 4.12 (b)]. We will refine
upon this result (for type Ar only) by giving an explicit description of a
normal ordering adapted to a quiver 0. As a first step in this direction, let
us reformulate the relation ``n is adapted to 0'' in terms of the pseudo-line
arrangement Arr(n).

We will encode a quiver 0 by the set 4 of all indices h # [2, r] such that
the edge (h&1, h) is oriented from h to h&1 in 0. The quiver that
corresponds this way to a subset 4/[2, r] will be denoted 0(4).

On the other side, let n be a normal ordering of 6r . Consider the corre-
sponding graph 1(n) constructed in Section 2.4. Let 10(n) be the graph
obtained from 1(n) by removing the horizontal parts of all Z-shaped con-
nectors. Alternatively, 10(n) can be obtained from (the wiring diagram of)
the arrangement Arr(n) by removing all segments of negative slope. Each
connected component of 10(n) is a part of a particular pseudo-line in
Arr(n). We will call a connected component of 10(n) non-trivial if it con-
tains at least one segment of positive slope. The normal ordering n and the
corresponding arrangement Arr(n) will be called boundary if all endpoints
of nontrivial connected components of 10(n) lie on the boundary of the
smallest rectangle that contains Arr(n). For example, Fig. 12 shows the
graphs 10(n) for the normal orderings (23 24 13 14 34 12) and (23 24 34
14 13 12).

Fig. 12. Two examples of graphs 10(n).
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(The pseudo-line arrangement corresponding to the first ordering appears
in Figs. 3 and 4 of Section 2.) The first of these two orderings is boundary,
while the second one is not.

4.4.1. Proposition. A normal ordering n of 6r is adapted to some quiver
0 if and only if n is boundary. If this is the case, then 0 is uniquely deter-
mined by n. Namely, 0=0(4) where 4 is the set of all indices h # [2, r]
such that the right endpoint of Lineh in Arr(n) belongs to a non-trivial com-
ponent of 10(n).

For instance, the ordering n=(23 24 13 14 34 12) shown in Figure 12 is
adapted to the quiver 0([2]) of type A3 (see (4.4.2)).

Proof. Let n be a boundary normal ordering, and let h=(h1 , ..., hm) #
R(w0) be the corresponding reduced word. For k=0, 1, ..., m, let 4k be the
set of indices h # [2, r] such that the segment of the h th horizontal line
(counting bottom-up) lying immediately to the right of the k th diagonal
connector (counting from the left to the right) belongs to a nontrivial
component of 10(n). In this notation, the set 4 in our proposition is 4m .
In view of (4.4.1), the fact that n is adapted to 0(4) is a consequence of
the following lemma.

4.4.2. Lemma. For k=1, ..., m, the vertex hk is a sink of the quiver
0(4k), and we have

shk 0(4k)=0(4k&1). (4.4.4)

Proof of Lemma 4.4.2. By definition, a vertex h # [2, r&1] is a sink of
a quiver 0(4) if and only if h � 4, (h+1) # 4; in this case we have

sh0(4)=0(4 _ [h]"[h+1]). (4.4.5)

If h=1 or h=r, this is modified as follows: the vertex 1 is a sink of 0(4)
if and only if 2 # 4, and in this case s10(4)=0(*"[2]); the vertex r is a
sink of 0(4) if and only if r � 4, and in this case s10(4)=0(4 _ [r]).
This description allows to prove the lemma by a straightforward verifica-
tion. To convince yourself that it can indeed be done, examine Fig. 13
where the vertical arrows describe the quivers 0(4k). K

Lemma 4.4.2 yields the ``if '' part of Proposition 4.4.1. The ``only if '' part
and the uniqueness of 0 can also be checked from the description of
sh0(4) given in (4.4.5), and from the above pictorial interpretation. K

Now let 4 be an arbitrary subset of [2, r]. Using Proposition 4.4.1, we
will explicitly construct (an isotopy class of) a boundary pseudo-line
arrangement Arr(4) adapted to the quiver 0(4). Consider a square on the
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Fig. 13. Quivers appearing in 10(n).

plane, with vertical and horizontal sides. The 2(r+1) endpoints of our
pseudo-lines will divide each vertical side of the square into r equal parts.
As in Section 2.3, we number the left endpoints top to bottom, while the
right endpoints are numbered bottom-up. Each pseudo-line Linei will
connect the endpoints labelled i. The pseudo-lines Line1 and Liner+1 of
Arr(4) will be the diagonals of the square. For each h # [2, r], we define
the pseudo-line Lineh to be a union of two line segments of slopes ?�4 and
&?�4, respectively. There are two ways to connect the corresponding
points on the left and on the right sides using these slopes, and we choose
one way or another depending on whether h belongs to 4 or not. For
h # 4, the left segment has negative slope, and the right one has slope ?�4;
for h # [2, r]"4, it goes the other way around. For example, the arrange-
ment Arr(2, 4) for r=5 is shown in Fig. 14.

4.4.3. Proposition. A normal ordering n is adapted to the quiver 0(4)
if and only if the arrangement Arr(n) is isotopic to Arr(4).

Fig. 14. A boundary pseudo-line arrangement.
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Proof. It is easy to see that the nontrivial components of 10(n) can be
identified with maximal line segments of positive slope in Arr(4). Then our
statement follows from Proposition 4.4.1 and the pictorial interpretation of
Fig. 13. K

To produce an actual normal ordering n using the above procedure, one
can list all crossing points in Arr(4) from left to right, arranging the
crossings lying on the same vertical line in an arbitrary order. For example,
in Fig. 14 one can take

n(2, 4)=(23 45 13 46 25 15 26 16 35 24 36 14 56 34 12).

The following two results are simple consequences of Proposition 4.4.3.

4.4.4. Corollary. Let n0 and n1 be the normal orderings given by
(2.4.13) and (4.2.3). Then n0 is adapted to 0([2, r]), while n1 is adapted
to 0(,).

4.4.5. Corollary. If a normal ordering n is adapted to 0(4)
(cf. Proposition 4.4.3), then the chamber sets Ln(i, j) for n (see (2.5.1)) are
given by

Ln(i, j)=([i+1, j&1] & 4) _$ [1, i&1] _$ [ j+1, r+1], (4.4.6)

where _$ means that the set [1, i&1] (resp. [ j+1, r+1]) is only taken
when i # [2, r]"4 (resp. j # [2, r]"4).

Remembering (4.4.3), we see that Corollaries 4.4.4 and 4.4.5 imply the
following result.

4.4.6. Corollary. Let 00=0([2, r]) be the quiver that has each edge
(h&1, h) oriented from h to h&1. For every quiver 0=0(4), the map
900, 0 coincides with the transition map Rn

n0 given by formula (4.2.1), with
L=Ln(i, j) given by (4.4.6).

This corollary is essentially a restatement of [23, Theorem 6.0].

5. THE CASE OF AN ARBITRARY PERMUTATION

In this concluding chapter we show that in most of our results, the maxi-
mal permutation w0 can be replaced by an arbitrary element w of the Weyl
group Sr+1. From now on, we fix an element w # Sr+1 of length l(w)=l.

133CANONICAL BASES AND TOTAL POSITIVITY



File: 607J I56786 . By:BV . Date:26:08:96 . Time:13:45 LOP8M. V8.0. Page 01:01
Codes: 3338 Signs: 2487 . Length: 45 pic 0 pts, 190 mm

5.1. Generalization of Theorem 2.2.3

As an obvious generalization of Definition 2.2.1, we will associate to a
permutation w # Sr+1 the Lusztig variety Lw(P) over a semiring P satisfying
condition (2.1.1). An element t of Lw(P) is, by definition, a tuple t=
(th)h # R(w) where each th=(th

1 , ..., th
l ) is a ``vector'' in Pl, and these vectors

satisfy the 2-move and 3-move relations (1.13) and (1.14). Thus, the variety
Lw0(P) corresponding to the maximal element w0 of Sr+1 coincides with
Lr(P).

Our first result is a description of the Lusztig variety Lw(R>0) which
generalizes Theorem 2.2.3. (We leave aside another important special case
where the ground semiring P is the tropical semiring Z+; it is an intriguing
problem to find an interpretation of Lw(Z+) in the spirit of Example 2.2.5.)
The first statement in Theorem 2.2.3 generalizes verbatim: for an element
t=(th

k) # Lw(R>0), the product

x(t)=(1+th
1eh1

) } } } (1+th
l ehl) (5.1.1)

does not depend on the choice of a reduced word h=(h1 } } } , hl) # R(w).
Thus, t [ x(t) is a well-defined map Lw(R>0) � N. This map is injective,
which follows from the corresponding statement for w0 and the fact that
any reduced word for w is a left factor of a reduced word for w0 . Let us
describe the image of this map.

Assume (I, J) is a reduced admissible pair of subsets of [1, r+1], as
defined in Section 2.4. Let wJ

I # Sr+1 denote the permutation that sends J
to I, and whose restrictions onto both J and J� =[1, r+1]&J are
monotone increasing maps. For example, if r=4, I=[1, 3], J=[2, 5],
then wJ

I =21453, in the one-line notation. (The latter means that wJ
I sends

1, 2, 3, 4, 5 to 2, 1, 4, 5, 3, respectively.) It is not hard to see that the corre-
spondence (I, J) [ wJ

I is a bijection between the set of all reduced
admissible pairs and the set of all 321-avoiding permutations.

Let N w
>0 /N denote the set of unipotent upper-triangular matrices z

whose minors satisfy the following property:

2J
I (x)>0, if wJ

I �w;

2J
I (x)=0, otherwise,

where � stands for the (strong) Bruhat order (see, e.g., [22, 5.9]). For
example, if r=3 and w=2431, in the one-line notation, then there are 10
(out of the total of 14) 321-avoiding permutations w$ # S4 such that w$�w.
The remaining four are 3124=w23

12 , 3142=w24
12 , 3412=w34

12 , and 4123=
w234

123 . Therefore N 2431
>0 is the set of all unipotent upper-triangular matrices

x=(xij)
4
i, j=1 such that the minors 223

12(x), 224
12(x), 234

12(x), and 2234
123(x) are

equal to 0, and all other minors of x that do not identically vanish on the
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whole group N/SL4 are positive. It is not hard to see that some of these
conditions are superfluous, and we can describe N 2431

>0 by the following
equations and inequalities:

223
12(x)=0; 234

12(x)=0; 234
23(x)>0; xij>0,

for all 1�i< j�4.

5.1.1. Theorem. The map t [ x(t) defined by (5.1.1) is a bijection
between Lw(R>0) and N w

>0.

Proof. The fact that x(t) # N w
>0 for all t # Lw(R>0) is a consequence of

formulas (2.4.7) and (2.4.8) combined with the subword criterion for the
Bruhat order (see, e.g., [22, 5.10]) and the following simple combinatorial
lemma whose proof is omitted.

5.1.2. Lemma. Let the generators of the nil�Temperley�Lieb algebra
NTLr act on the subsets of [1, r+1] according to (2.4.6). For any reduced
admissible pair (I, J), the sequences (h1 , ..., hs) such that

uh1
uh2

} } } uhs(J)=I

are exactly the reduced words for wJ
I . K

It remains to prove that the map t [ x(t) from Lw(R>0) to N w
>0 is

surjective. Let us temporarily denote the image of this map by Nw, so we
need to show that Nw=N w

>0. Let N�0 be the set of matrices x # N whose
all minors are nonnegative. By definition, all the N w

>0 are subsets of N�0.
The desired equality Nw=N w

>0 will be an immediate consequence of the
following two statements:

(i) the union of all N w is N�0;

(ii) the subsets N w
>0 are pairwise disjoint.

Let us prove (i). We will need the classical approximation theorem of
A. Whitney [35]: N�0 is the closure of N>0 in N, with respect to the usual
topology of a real Lie group. For the convenience of the reader, let us
prove this fact. Fix a reduced word h=(h1 , ..., hm) # R(w0), and consider
the map

(t1 , ..., tm) [ xh(t1 , ..., tm)=(1+t1 eh1
) } } } (1+tmehm),

where all the tk are nonnegative real numbers; note that so far we always
required tk>0 for all k. Clearly, t [ xh(t) is a continuous map Rm

�0 �
N�0 , and xh(Rm

>0)=N>0 by Theorem 2.2.3. Now let x # N�0. Then

x=x } xh(0, 0, ..., 0)= lim
* � 0+

x } xh(*, *, ..., *),
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where x } xh(*, *, ..., *) # N>0 , since, generally, x # N�0 and x$ # N>0 implies
xx$ # N>0 , by the Binet�Cauchy formula. Therefore, x lies in the closure of
N>0 , as desired.

Our next step in proving (i) is to show that, in the notation just intro-
duced, the union of all Nw is equal to the image xh(Rm

�0). The inclusion
�w N w/xh(R

m
�0) is clear since any reduced word for w is a subword of

h # R(w0). To prove the reverse inclusion, we need to show that any matrix
xh(t1 , ..., tm) with all tk�0 belongs to some set Nw. This follows by removing
from the product xh(t1 , ..., tm) all factors (1+tk ehk) with tk=0, and simpli-
fying the remaining product with the help of 2- and 3-move relations
combined with the obvious relation

(1+seh)(1+teh)=(1+(s+t) eh).

To complete the proof of (i), it remains to show that every matrix x # N�0

has the form xh(t1 , ..., tm) where all the tk are nonnegative. We have
already shown that x lies in the closure of N>0 , i.e., is the limit of some
sequence of matrices x1 , x2 , ... # N>0. By Theorem 2.2.3, each xn has the
form xn=xh(t1n , ..., tmn) where all the tkn are positive. We claim that the
collection of all numbers tkn is bounded, for a fixed x. This follows from an
observation that, for each n�1, the sum t1n+ } } } +tmn is equal to the sum
of all entries of the matrix xn which lie immediately above the main
diagonal. Now the standard compactness argument shows that (replacing,
if necessary, the sequence x1 , x2 , ... by a subsequence) we may assume that
for each k=1, ..., m, the sequence tk1 , tk2 , ... converges to some tk�0.
By continuity, x=xh(t1 , t2 , ..., tm), which completes the proof of (i).

Statement (ii) is purely combinatorial: the assertion is that a permu-
tation w # Sr+1 is uniquely determined by the family of all 321-avoiding
permutations wJ

I which are less than or equal to w in the Bruhat order.
This is a corollary of a much stronger recent result due to A. Lascoux and
M. P. Schu� tzenberger [26], in which 321-avoiding permutations are
replaced by the so-called bigrassmannian permutations. In our notation, the
bigrassmannian permutations are exactly the wJ

I , where I and J are inter-
vals in [1, r+1]. Thus, Theorem 4.4 in [26] can be formulated as follows.

5.1.3. Lemma. A permutation w # Sr+1 is uniquely determined by the
family of all triples of integers (a, b, c) such that 0�a<b<c�r+1 and
w[b+1, c]

[a+1, c&b+a]�w.

Since this lemma implies (ii), Theorem 5.1.1 is proved. K

The above proof implies the following description of the variety N�0 of
all unipotent upper-triangular matrices with nonnegative minors.
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5.1.4. Theorem. The variety N�0 is the disjoint union of its subsets N w
>0 ,

for all w # Sr+1 . Each N w
>0 is the set of all matrices x # N�0 satisfying the

following conditions:

2[b+1, c]
[a+1, c&b+a](x)>0, if 0�a<b<c�r+1 and w[b+1, c]

[a+1, c&b+a]�w;

2[b+1, c]
[a+1, c&b+a](x)=0, otherwise.

Returning to the case of an arbitrary ground semiring P, we can straight-
forwardly generalize Theorem 2.2.6 in the following way.

5.1.5. Theorem. For any h # R(w), the projection t [ t h is a bijection
between the Lusztig variety Lw(P) and Pl.

As in Section 2.2, this theorem allows us to define the transition maps Rh$
h :

Pl � Pl for any two reduced words h and h$ for an arbitrary permutation w.

5.2. Extending the Results of Sections 2.3, 2.4

In this section, we work over an arbitrary ground semiring P satisfying
condition (2.1.1). For any h # R(w), let us define the map t [ Xh (t) from
Pl to the nil�Temperley�Lieb algebra NTLr(P) (see Section 2.4) by

Xh (t)=(1+t1uh1
) } } } (1+tluhl). (5.2.1)

The arguments from Section 2.4 show that the maps Xh for all h # R(w)
give rise to a well-defined map t [ X(t) from the Lusztig variety Lw(P) to
NTLr(P) (cf. (2.4.5)). The following statement generalizes Corollary 2.4.8.

5.2.1. Proposition. Each of the maps Xh and hence the map t [ X(t)
from the Lusztig variety Lw(P) to the nil�Temperley�Lieb algebra NTLr(P)
is injective.

Proof. This follows from the corresponding statement for w0 and the
fact that any reduced word for w is a left factor of a reduced word for w0

(the same reasoning was used in Section 5.1 to prove the injectivity of the
map t [ x(t)). K

As in Section 2.4, we have welI-defined ``minors'' 2J
I (t)=2J

I (X(t)) as
functions Lw(P) � P _ [0]. These functions are explicitly given by (2.4.8).
Let us describe which of them do not vanish on Lw(P).

5.2.2. Proposition. Let t # Lw(P), and let (I, J) be a reduced admissible
pair of subsets of [1, r+1]. Then 2J

I (t) # P if wJ
I �w (with respect to the

Bruhat order), otherwise 2J
I (t)=0.

Proof. Follows from (2.4.8) and Lemma 5.1.2. K
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Now let us adapt the combinatorial constructions of Section 2.3 to the
case of an arbitrary permutation w. This will lead to a modified realization
of the Lusztig variety Lw(P), which will involve two-subscript notation
and the notion of a normal ordering. With any reduced word h # R(w) we
associate an arrangement Arr(h) of labelled pseudo-lines Line1 , ..., Liner+1 ,
as follows. Choose a reduced word h� # R(w0) having h as its right factor.
Consider the arrangement Arr(h� ) constructed in Section 2.3. Then Arr(h)
is the part of Arr(h� ) lying to the right of the vertical line that separates the
l rightmost crossings from the previous ones. Obviously, Arr(h) does not
depend on the choice of h� . Scanning the left endpoints of pseudo-lines
in Arr(h� ) bottom-up yields the inverse permutation w&1, in the one-line
notation. See example in Fig. 15.

Let (i, j) # 6r (see (2.3.1)). It is clear that Arr(h) contains the crossing
Linei & Linej if and only if w(i)>w( j). Thus, the left-to-right ordering of
the crossing points in Arr(h) results in a total ordering on the set of pairs

6w=[(i, j) # 6r : w(i)>w( j)]. (5.2.2)

We denote this ordering of 6w by n=n(h) and call it the normal ordering
associated to h. By changing the names of the components of a point
t # Lw(P) from th

k to tn
ij , we identify t with a family of ``vectors'' t n # P6 w

satisfying the 2-move and 3-move relations from Section 2.3. For any two

Fig. 15. Arrangement Arr(h) for w=2431 and h=1232.
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normal orderings n and n$ of 6w, there is a well-defined transition map
Rn$

n : P6 w
� P6 w

. For any function f on Lw(P) and any normal ordering n
of 6w, there is a function f n on P6w

defined via a straightforward modifica-
tion of the last paragraph of Section 2.3.

In particular, any minor 2J
I gives rise to a family of polynomials (2J

I )n

in the variables tij , (i, j) # 6w, one for each normal ordering n of 6w.
Modifying the definition of the graph 1(n) in the natural way, and
repeating the argument used in the proof of Theorem 2.4.4, we see that
these polynomials are given by (2.4.10). The following proposition is a
generalization of Corollary 2.4.5, and is proved in the same way.

5.2.3. Proposition. For any normal ordering n of 6w, any a # [1, r+1],
and t=(tij)(i, j) # 6w , we have

(2w&1[1, a&1]) n (t)= `
w( j)<a�w(i)

tij . (5.2.3)

In particular, the polynomial (2w&1[1, a]) n does not depend on n.

We will now generalize Theorem 2.4.6. Consider the lexicographically
minimal reduced word h0(w) # R(w) and the corresponding normal
ordering n0(w)=n(h0(w)). The ordering n0(w) can be described as follows.
As in the proof of Lemma 2.7.2, we can view any normal ordering n of 6w

as the process of sorting the sequence

w&1(1), w&1(2), ..., w&1(r+1).

In this interpretation, n0(w) sorts the sets w&1([1, a]), for a, =2, ..., r,
successively: after completely sorting the elements of w&1([1, a]), we inter-
change i=w&1(a+1) with all numbers j such that j>i and w( j)�a. For
example, if w=2431, then w&1=4132, and n0(w)=(14 34 24 23) (cf. Fig. 15).

5.2.4. Theorem. For any normal ordering n of 6w, the transition map
from n to n0(w) is given by

(Rn0(w)
n (t)) ij=

(2I _ [ j]
[w(i)&1&|I |, w(i)&1]) n (t)(2I

[w(i)+1&|I | , w(i)]) n (t)

(2I _ [ j]
[w(i)&|I |, w(i)])n (t)(2I

[w(i)&|I | , w(i)&1])n (t)
, (5.2.4)

where

I=I(i, j; w)=[a # [1, r+1]: a> j, w(a)<w(i)]. (5.2.5)

Note that (5.2.4) specializes to (2.4.14) when w=w0 .
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Proof. We follow the proof of Theorem 2.4.6, with necessary modifica-
tions. It is enough to prove the following formula generalizing (2.4.15):

tij=
(2I _ [ j]

[w(i)&1&|I | , w(i)&1]) n0(w) (t)(2I
[w(i)+1&|I | , w(i)]) n0(w) (t)

(2I _ [ j]
[w(i)&|I |, w(i)]) n0(w) (t)(2I

[w(i)&|I | , w(i)&1]) n0(w) (t)
. (5.2.6)

The minors in the right-hand side of (5.2.6) are given by the following
lemma.

5.2.5. Lemma. Let I=[k # [1, r+1]: k>b, w(k)<a] for some indices
a, b # [0, r+1]. Then

(2I
[a&|I |, a&1]) n0

(t)= `
i< j, j # I, w(i)�a

tij . (5.2.7)

This lemma generalizes Lemma 2.4.7 and is proved in the same way. To
complete the proof of Theorem 5.2.4, it remains to substitute the expres-
sions given by Lemma 5.2.5 into the right-hand side of (5.2.6), and perform
the cancellation. K

5.3. Chamber Sets and Chamber Ansatz for Arbitrary w

Let n be a normal ordering of 6w, and let Arr(n) be the corresponding
pseudo-line arrangement. The definition of chamber sets L n(i, j) given by
(2.5.1), and the Chamber Ansatz substitution (2.5.3) extend to arbitrary w
without any changes, provided (i, j) # 6w. However, for a given w, not all
subsets J/[1, r+1] can appear as chamber sets. We say that a subset
J/[1, r+1] is a w-chamber set if J is a chamber set for some normal
ordering of 6w. The following characterization of w-chamber sets follows
easily from the definitions.

5.3.1. Proposition. A subset J/[1, r+1] is a w-chamber set if and
only if J has the following property:

if i< j, i � J, and j # J, then w(i)>w( j), i.e., (i, j) # 6w. (5.3.1)

Clearly, the corresponding version of Proposition 2.5.1 remains valid for
any w: in order to define a point of the Lusztig variety Lw(P) via the
Chamber Ansatz, the components MJ must satisfy the 3-Term Relations
(2.5.4), where the six participating subsets are assumed to be w-chamber
sets. We then define Mw(P) as the set of tuples M=(MJ) of elements of P
indexed by w-chamber sets J and satisfying the 3-Term Relations (2.5.4)
and normalization conditions (2.7.1). Theorem 2.7.1 generalizes as follows
(the same proof works).
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5.3.2. Theorem. The Chamber Ansatz gives rise to a bijection M [
t(M) between Mw(P) and the Lusztig variety Lw(P). The inverse bijection
t=(tn

ij) [ M(t) from Lw(P) to Mw(P) is given by (2.7.2).

As in Section 2.7, a consequence of Theorem 5.3.2 is Corollary 2.7.4, for
M=Mw(P). Another important consequence is Theorem 2.9.1 which
obviously extends to the case of arbitrary w (for each w-chamber set J, we
view MJ as a function on Lw(P)).

It should be possible to extend to arbitrary Mw(P) the change of coor-
dinates (MJ) � (Za , TJ) on Mr(P) defined in Section 2.9. We will not attempt
at doing it here, since the meaning of such a change is not as clear as in
the case w=w0 . Instead, we compute the function MJ in the case when J
is a chamber set for the ordering n0(w) defined in Section 5.2. The chamber
sets of n0(w) can be described as follows (cf. (2.8.4)):

Ln0(w)(i, j)=[k # [1, r+1]: k< j, w(k)<w(i)] (5.3.2)

for all (i, j) # 6 w. Thus, any chamber set for n0(w) has the form

J=[k # [1, r+1]: k�b, w(k)<a]

for some indices a, b # [0, r+1].

5.3.3. Proposition. Let

I=[k # [1, r+1]: k>b, w(k)<a],

J=[k # [1, r+1]: k�b, w(k)<a],

for some a, b # [0, r+1]. Then the function MJ on the Lusztig variety Lw(P)
is given by

MJ=
2I

[a&|I | , a&1]

2w&1[1, a&1] . (5.3.3)

Proof. Combine (5.2.3) and (5.2.7) with (2.7.2). K

In particular, setting b=r+1 in (5.3.3), we obtain

Mw&1[1, a&1]=
1

2w&1[1, a&1]
, (5.3.4)

for a=1, ..., r+1.
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5.4. Generalizations of Theorems 3.1.1 and 3.2.5

We now return to the case of the ground semifield R>0. By Theorem
5.1.1, the Lusztig variety Lw(R>0) can be identified with the subset
Nw

>0/N. Thus, for any w-chamber set J, we can view each term MJ in
the Chamber Ansatz as a function N w

>0 � R>0. We will compute these
functions explicitly, generalizing Theorem 3.1.1 that gives an answer for the
case w=w0 .

Our first task is to extend to an arbitrary w the birational automorphism
x � y given by (3.1.1). To do this, we need some geometric information on
the set N w

>0. Let B&/G=GLr+1 be the Borel subgroup of lower-triangular
matrices. The unipotent radical N& of B& is NT, the subgroup transpose
to N. It is well known (see, e.g., [18, Section 23.4]) that G is the disjoint
union of its Bruhat cells B&wB& , for all w # Sr+1; here a permutation w
is identified with the matrix ($i, w( j)). On the other hand, by Theorem 5.1.4,
the subsets N w

>0 , for w # Sr+1, form a disjoint decomposition of the variety
N�0. The following proposition relates these two phenomena.

5.4.1. Proposition. For any w # Sr+1 , we have

N w
>0=N�0 & B&wB&. (5.4.1)

Proof. It is enough to show that N w
>0 /B&wB&. In view of Theorem

5.1.1, any element x # N w
>0 has the form (5.11), i.e., can be factored as

x=(1+t1 eh1
) } } } (1+tl ehl),

where (h1 , ..., hl) # R(w), and tk>0 for all k. It is straightforward to check
that if h=1, ..., r and t{0 then (1+teh) # B&sh B&. Therefore, we have

x # B&sh1
B&sh2

B& } } } shl B&=B& wB& ,

as desired. (This argument follows the proof of Proposition 42.2.4 in
[29].) K

Now consider the flag variety B&"G, and the natural projection ?: G �
B&"G. The Bruhat decomposition of G gives rise to the decomposition of
B&"G into the disjoint union of Schubert cells Xw=?(B&wB&), w # Sr+1 .
An explicit isomorphism of Xw with an affine space is constructed as
follows. Define the subgroup N(w) of N by

N(w)=N & w&1N&w

=[ y # N: yij=0 whenever i< j, w(i)<w( j)]. (5.4.2)
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It is well known (and easy to check) that there is an isomorphism of
algebraic varieties ?w : N(w) � Xw given by

?w( y)=?(w } yT). (5.4.3)

Thus, we can take the matrix entries yij , for (i, j) # 6 w (see (5.2.2)), as
affine coordinates on Xw .

Now everything is ready for a generalization of (3.1.1). Since N & B&=
[e], the restriction of the projection ? to N w

>0 is an embedding of N w
>0 to

Xw . Identifying the Schubert cell Xw , with N(w) via the map ?w given by
(5.4.3), we obtain an embedding ?&1

w b ?: N w
>0 � N(w). As in (3.1.1), we will

write this embedding simply as x [ y. Unraveling the definitions and using
the same notation as in Section 3.1, we see that a matrix x # N w

>0 and the
corresponding matrix y # N(w) are related by

x=[wyT]+, wyTw&1=[xw&1]+; (5.4.4)

note that this formula specializes to (3.1.1) when w=w0 . Theorem 3.1.1
generalizes as follows.

5.4.2. Theorem. For t # Lw(R>0), let x=x(t) # Nw
>0 be the matrix

corresponding to t via (5.1.1), and let y # N(w) be related to x by (5.4.4).
Then, for every w-chamber set J/[1, r+1], we have MJ (t)=2J ( y).

Proof. Following the proof of Theorem 3.1.1, we begin by generalizing
the identities in Lemma 3.1.3. Assume that matrices x # N and y # N(w) are
related by (5.4.4). The proof of the following two lemmas is essentially the
same as that of Lemma 3.1.3.

5.4.3. Lemma. For any J/[1, r+1], we have

2J (x)=
2w&1[1, |J |]

J ( y)

2w&1[1, |J |]( y)
; (5.4.5)

in particular, for 1�a�r+1, we have

2w&1[1, a&1](x) 2w&1[1, a&1]( y)=1. (5.4.6)

5.4.4. Lemma. Let I and J have the same meaning as in Proposition
5.3.3, and let 0�d<min(J). Then

2[d+1, d+|J |] _ I (x)=
2J

[d+1, d+|J | ]( y)

2w&1[1, a&1]( y)
(5.4.7)
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and

2J
[d+1, d+|J | ]( y)=

2[d+1, d+|J |] _ I (x)

2w&1[1, a&1](x)
. (5.4.8)

In particular, setting d=0 in (5.4.8) yields

2J ( y)=
2I

[a&|I |, a&1](x)

2w&1[1, a&1](x)
. (5.4.9)

The proof of Theorem 5.4.2 can now be completed as follows. The same
argument as in the proof of Theorem 3.1.1 shows that it is enough to check
the desired identity MJ (t)=2J ( y) for all chamber sets in any given
arrangement Arr(n) for w. Take n=n0(w) (see Section 5.2). Then the cham-
ber sets for n are precisely the sets J that appear in Proposition 5.3.3 and
Lemma 5.4.4, so our statement follows by comparing (5.3.3) with (5.4.9). K

Our next goal is a generalization of Theorem 3.2.5. Let N(w)>0 (not to
be confused with N w

>0) denote the set of all matrices y # N(w) such that
2J ( y)>0 for all w-chamber sets J.

5.4.5. Theorem. The embedding x [ y given by (5.4.4) is a bijection
between N w

>0 and N(w)>0 .

Proof. The fact that the image of N w
>0 under the embedding x [ y is

contained in N(w)>0 , follows from Theorems 5.4.2 and 5.3.2. To prove the
reverse inclusion, we only need to show that a matrix y # N(w)>0 is uniquely
determined by its flag minors 2J ( y) corresponding to the w-chamber sets J.
This is a consequence of the following algebraic lemma. Let us regard the
matrix entries yij and the minors 2J ( y) as elements of the field Q( yij) of
rational functions in the variables yij , for (i, j) # 6 w.

5.4.6. Lemma. Every matrix entry yij with (i, j) # 6 w can be expressed in
Q( yij) as a Laurent polynomial in the elements 2J ( y), where J runs over all
w-chamber sets.

Proof. Fix a pair (i, j) # 6w and consider the set I=[k # [i+1, j&1]:
w(k)<w( j)]. The description (5.3.1) of w-chamber sets implies readily that
both J=[1, i&1] _ I _ [ j] and J$=[1, i] _ I are w-chamber sets. As
polynomials on N, the flag minors 2J and 2J$ can be rewritten in the form
2J=2I _ [ j]

[i, i+|I | ] and 2J$=2I
[i+1, i+|I |] . Expanding the first of these minors in

the last column, we obtain

2J ( y)=(&1) |I | 2J$( y) yij+Q( y),
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where Q( y) is a polynomial in the variables yi $j $ such that (i $, j $){(i, j)
and [i $, j $]/[i, j]. Using induction on j&i, we can assume that Q( y) is
a Laurent polynomial in the flag minors corresponding to w-chamber sets.
Hence, the same is true for

yij=(&1) |I | 2J ( y)&Q( y)
2J$( y)

.

Lemma 5.4.6 and Theorem 5.4.5 are proved. K

5.4.7. Example. Let r=3 and w=4231, i.e., w is the transposition of 1
and 4. Then l(w)=5 and 6w=[(i, j): 1�i< j�4, (i, j){(2, 3)]. In this
case, each of the entries y12 , y14 , y24 , y34 is a flag minor corresponding to
a w-chamber set, namely

y12=22, y14=24, y24=214, y34=2124.

As for the remaining entry y13 , the procedure in the above proof expresses
it as y13=&223. In particular, we see that this entry is negative for y # N(w)>0.

The last result can be viewed as a generalization of the total positivity
criteria given in Theorem 3.2.1.

5.4.8. Proposition. Let n be a normal ordering of 6w. A matrix y # N(w)
belongs to N(w)>0 if and only if 2J ( y)>0 for any chamber set J of n.

Proof. This follows from the generalization of Corollary 2.7.4 mentioned
in Section 5.3. K

In particular, taking n=n0(w) and using (5.3.2), we obtain the following
generalization of the Fekete criterion (Theorem 3.2.2).

5.4.9. Corollary. A matrix y # N(w) belongs to N(w)>0 if and only if

2[1, j] & w&1[1, w(i)&1]( y)>0

for all (i, j) # 6w.

APPENDIX: CONNECTIONS WITH THE
YANG�BAXTER EQUATION

Here we explain the connection between the 2-move and 3-move relations
and the ubiquitous Yang�Baxter equation.
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Denoting Ri (x)=1+xui , we can rewrite (2.4.1) and (2.4.2) as

Ri (t1) Rj (t2)=Rj (t2) Ri (t1), |i& j |�2 (A.1)

and

Ri (t1) Rj(t2) Ri (t3)

=Rj \ t2 t3

t1+t3+ Ri (t1+t3) Rj \ t1 t2

t1+t3+ , |i& j |=1, (A.2)

respectively. Let us also remark that

Ri (0)=1 (A.3)

for all i. In this language, transition maps for the Lusztig variety establish
relationships between different products of the form Ri1(t1) Ri2(t2) } } } . We
will now describe a general setup for the study of the equations (A.1)�(A.3).

Let A be an associative algebra over a field K of characteristic zero, and
let Ri (x) # A[[x]], i=1, ..., r, be formal power series with coefficients in A.
In this context, the Yang�Baxter equations are (A.1) and (A.3) together
with

Ri (x) Ri+1(x+ y) Ri ( y)=Ri+1( y) Ri (x+ y) Ri+1(x), (A.4)

where x and y are formal variables which commute with each other (cf. [2,
12]). We will be interested in those solutions of the Yang�Baxter equations
which are ``re-scalable'' in the following sense: for any scalars :1 , ..., :r # K,
the rescaled functions R� i (x)=Ri (:ix) also satisfy the same equations (A.1),
(A.3), and (A.4). An easy inspection shows that imposing this condition
amounts to replacing the Yang�Baxter equation (A.4) by a stronger condition

Ri (x) Ri+1(;(x+y)) Ri ( y)

=Ri+1(;y) Ri (x+y) Ri+1(;x), ; # K. (A.5)

A.1. Proposition. Equations (A.1)�(A.3) are equivalent to the ``scale-
invariant Yang�Baxter equations'' (A.1), (A.3), and (A.5).

Proof. Observe that the change of variables

t1=x, t2=;(x+ y), t3= y

converts (A.5) into (A.2). K

The general solution to the system of equations (A.1)�(A.3) is given by
the following theorem.
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A.2. Theorem. Let A be an associative algebra over a field of charac-
teristic zero. The formal power series Ri # A[[x]], i=1, ..., r, satisfy the
equations (A.1)�(A.3) if and only if they are given by

Ri (x)=exp(xvi) (A.6)

where v1 , ..., vr are some elements of A satisfying the relations

vivj&vj vi=0, |i& j |�2, (A.7)

v2
i vj&2vivjvi+vjv2

i =0, |i& j |=1. (A.8)

Proof. Setting ;=0 in (A.5) results in

Ri (x+ y)=Ri (x) Ri ( y). (A.9)

It follows from (A.3) and (A.9) that the Ri are given by (A.6), where
v1 , ..., vr are some elements of the associative algebra A: one can simply
take vi=R$i (0). (In the terminology of [16], this means that the Ri (x) are
exponential solutions of the Yang�Baxter equations.) We then see from
(A.1) that the elements vi must satisfy the partial commutativity condition
(A.7). Conversely, suppose that the vi satisfy (A.7), and the Ri are defined
by (A.6). Then conditions (A.1) and (A.3) become obvious. It remains to
show that (A.5) is equivalent to the relations (A.8). This is a consequence
of Theorem 1 in [16] that describes all exponential solutions of the Yang�
Baxter equations. K

A.3. Remarks. 1. Equations (A.1), (A.3), (A.4), and (A.9) are some-
times called the colored braid relations. As shown in [15], solutions of
these relations give rise to generalized Schubert polynomials and provide
an adequate algebraic formalism for their study.

2. The relations (A.7)�(A.8) are the well known Serre relations for
type Ar . By Serre's theorem [33, 6.4], they form a system of defining rela-
tions for the universal enveloping algebra U(Lie(N)). Thus, choosing the vi

in (A.6) to be the standard generators of A=U(Lie(N)) provides the
universal solution to relations (A.1)�(A.3). (This solution was found in
[15].) Any other solution can be obtained from the universal one via a
homomorphism U(Lie(N)) � A. An example of this kind is given by the
nil�Temperley�Lieb algebra which is the quotient algebra of U(Lie(N))
modulo the additional relations v2

i =0. The corresponding solution has the
form Ri (x)=exp(xui)=1+ui where the ui are generators of the algebra
NTL, (this returns us to the starting point of this Appendix). Adding to the
defining relations of NTL one more relation

vi vj=0 unless j=i+1,
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we obtain the associative algebra of nilpotent upper-triangular matrices,
with its standard generators ei . This brings us back to the original Lusztig's
solution of the equations (A.1)�(A.3).
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