Задачи к 28.02.

Остались не разобранными две очень важная задачи:

- задача 3 из прошлого задания (про существование на кубике точки перегиба);
- задача 5 из позапрошлого задания (независимость определения оператора D_a от выбора проективных координат);

Задача 1 из прошлого задания была сформулирована с ошибкой, правильная формулировка ниже — задача 3.

- (1) Докажите, что операторы D_a и D_b перестановочны, т.е. $D_aD_b=D_bD_a$. (Напоминание: $D_a=\sum_{k=0}^{k=n}a_k\frac{\partial}{\partial x_k}$.)
- (2) Докажите, что если гиперповерхность X задана однородным уравненнием степени d, и $a \in X$ неособая точка, то $P_{a^{d-1}}X$ совпадает с проективным касательным пространством $\mathbb{T}_a X$.
- (3) (Это исправление неправильно сформулированной задачи 1 прошлого задания.) Доказать, что если $a \in P_{b^k}X$, то и $b \in P_{a^{d-k}}X$. (Здесь X это гиперповерхность степени d в \mathbb{P}^n , заданная однородным уравнением $F(x_0, \ldots, x_n) = 0$, а $P_aX k$ -я поляра относительно точки $a \in \mathbb{P}^n$, т.е. гиперповерхность, заданная однородным уравнением $D_a^kF(x) = 0$.)
- (4) Докажите, что если гиперповерхность X задана однородным уравненнием степени d, и $a \in X$ неособая точка, то поляра $P_{a^{d-1}}X$ совпадает с проективным касательным пространством $\mathbb{T}_a X$.
- (5) Докажите, что если $a \in X$ неособая точка гиперповерхности X, то точка a лежит на всех полярах $P_{a^k}X$ и является на них также неособой точкой.
- (6) Докажите, что если $a \in X$ особая точка гиперповерхности X, то все поляры $P_{b^k}X$ проходят через точку a.
- (7) Докажите, что если $a \in X$ особая точка гиперповерхности X, то точка a также является особой точкой всех поляр $P_{a^k}X$.
- (8) Пусть на кривой X лежит простейшая особая точка a с разделенными касательными. (Напомним, что это значит, что если локально в аффинной карте с координатами (x,y) точка a имеет координаты (0,0), то уравнение кривой имеет вид $L_1(x,y)L_2(x,y)$ + слагаемые степени 3 и более =0 где $L_1(x,y)$ и $L_2(x,y)$ линейные формы.) Докажите, что если b другая точка плоскости (т.е. $b \neq a$), то поляра $P_b X$ неособа в точке a, и в пучке прямых, проходящих через точку a, пара прямых $L_1(x,y) = 0$ и $L_2(x,y) = 0$ гармонически делит пару прямых ab и $\mathbb{T}_a P_b X$. (Утешительный вариант этой задачи проверить это для декартова листа.)
- (9) Доказать, что определенная на прошлом занятии операция сложения на кубической кривой ассоциативна и каждая точка обладает противоположной.