Elliptic Integrals and Elliptic Functions

Takashi Takebe

19 March 2020

- If there are errors in the problems, please fix *reasonably* and solve them.
- The rule of evaluation is:

 (your final mark) = min {integer part of total points you get), 10}
- About twenty problems will be given till the end of the semester.
- This rule is subject to change and the latest rule applies.
- The deadline of 11 − 13: 2 April 2020. (Send the scan or the photo to Takebe.)
- 11. (1 pt.) Let $\varphi(z)$ be a polynomial satisfying the conditions in the seminar (19 March 2020). Show the following:
- (i) $\mathcal{R}_{\varphi} := \{(z, w) \in \mathbb{C}^2 \mid F_{\varphi}(z, w) := w^2 \varphi(z) = 0\}$ is a non-singular algebraic curve over \mathbb{C} .
 - (ii) The 1-form $\omega := \frac{dz}{w}$ is holomorphic everywhere on \mathcal{R}_{φ} .
- 12. Show that the closure $\bar{\mathcal{R}}_{\varphi}$ of \mathcal{R}_{φ} in $\mathbb{P}^2(\mathbb{C})$ constructed in the seminar on 19 March 2020 is
 - (i) (1 pt.) non-singular if $\deg \varphi(z) = 3$.
 - (ii) (1 pt.) singular if $deg \varphi(z) = 4$.
- 13. (2 pt.) Show that the elliptic curve $\bar{\mathcal{R}}_{\varphi}$ (deg $\varphi = 3$ or 4) is isomorphic to $\bar{\mathcal{R}}_{\psi}$, $\psi(z) = (1-z^2)(1-k^2z^2)$ for some $k \in \mathbb{C} \setminus \{0, \pm 1\}$. Construct a biholomorphic bijection $\Phi : \bar{\mathcal{R}}_{\varphi} \xrightarrow{\sim} \bar{\mathcal{R}}_{\psi}$ explicitly. (Hint: use the result of **5** (ii).)