Elliptic Functions

Complex Elliptic Integrals

§6.1 Complex elliptic integral of the first kind

Want: elliptic integrals $\int_{C} R(x, \sqrt{\varphi(x)}) d x$ with complex variables.
C : curve on the Riemann surface \mathcal{R} of $\sqrt{\varphi(z)}$,
or its compactification $\overline{\mathcal{R}}=$ the elliptic curve.

Let us begin with $\int \frac{d z}{\sqrt{\varphi(z)}}$, the elliptic integral of the first kind.

$$
\omega_{1}:=\frac{d z}{\sqrt{\varphi(z)}}=\frac{d z}{w}
$$

We know that ω_{1} is holomorphic on $\mathcal{R}=\overline{\mathcal{R}} \backslash\{\infty\}(\operatorname{deg} \varphi=3)$ or $\mathcal{R}=\overline{\mathcal{R}} \backslash\left\{\infty_{ \pm}\right\}(\operatorname{deg} \varphi=4)$. (Problem 11 (ii).)

How about on neighbourhoods of infinities?
Assume $\operatorname{deg} \varphi=4: \varphi(z)=a\left(z-\alpha_{0}\right)\left(z-\alpha_{1}\right)\left(z-\alpha_{2}\right)\left(z-\alpha_{3}\right)$.
(The case $\operatorname{deg} \varphi=3$ is similar.)
Recall:

- (a local coordinate at $\left.\infty_{ \pm}\right)=\xi=z^{-1}$.
- the equation of $\overline{\mathcal{R}}$ in the neighbourhood of $\infty_{ \pm}$:

$$
\eta^{2}=a\left(1-\alpha_{0} \xi\right)\left(1-\alpha_{1} \xi\right)\left(1-\alpha_{2} \xi\right)\left(1-\alpha_{3} \xi\right),
$$

where $\eta=w z^{-2}$.

- $\infty_{ \pm}=(\xi=0, \eta= \pm \sqrt{a} \neq 0)$.

Consequently,

- $d \xi=-z^{-2} d z$.
- $\omega_{1}=\frac{d z}{w}=-\frac{d \xi}{\eta}$.
- $\eta(\xi)=\sqrt{a\left(1-\alpha_{0} \xi\right)\left(1-\alpha_{1} \xi\right)\left(1-\alpha_{2} \xi\right)\left(1-\alpha_{3} \xi\right)}$ is holomorphic in ξ and $\eta(\xi) \neq 0$ in the neighbourhood of $\xi=0$.
$\Longrightarrow \omega_{1}$ is holomorphic at $\infty_{ \pm}$.

Conclusion: ω_{1} is holomorphic everywhere on $\overline{\mathcal{R}}$.
Moreover, $\omega_{1} \neq 0$ everywhere on $\overline{\mathcal{R}}$.
$\left(\omega_{1}=\frac{1}{w} d z\right.$ on \mathcal{R} and $\frac{1}{w} \neq 0 ; \omega_{1}=-\frac{1}{\eta} d \xi$ at $\infty_{ \pm}$and $-\frac{1}{\eta} \neq 0$.)
Exercise: Show that ω_{1} is holomorphic everywhere and nowhere-vanishing in the case $\operatorname{deg} \varphi=3$.

Fix $P_{0} \in \overline{\mathcal{R}}$.
ω_{1} is a holomorphic one-form on $\overline{\mathcal{R}}$.
$\Longrightarrow F(P):=\int_{P_{0} \rightarrow P} \omega_{1}=\int_{C: \text { contour from } P_{0} \text { to } P} \omega_{1}$
is "locally" well-defined.
Figure of $\overline{\mathcal{R}}$ and C :

$\Leftrightarrow F(P)$ does not change by "small perturbation of C."
Exactly speaking, by Cauchy's integral theorem,

$$
\left[C-C^{\prime}\right]=0 \text { in } H_{1}(\overline{\mathcal{R}}, \mathbb{Z}) \Longrightarrow \int_{C} \omega_{1}=\int_{C^{\prime}} \omega_{1}
$$

Figure: $\left[C-C^{\prime}\right]=0$.

Is $F(P)$ "globally" well-defined?
Need to know: How many "globally" different contours exist on $\overline{\mathcal{R}}$?
Answer from topology: $H_{1}(\overline{\mathcal{R}}, \mathbb{Z})=\mathbb{Z}[A] \oplus \mathbb{Z}[B]$, which means:
for \forall closed curve C on $\overline{\mathcal{R}}, \exists!m, n \in \mathbb{Z}$, such that

$$
[C]=m[A]+n[B] \text { in } H_{1}(\overline{\mathcal{R}}, \mathbb{Z})
$$

Figure: A-cycle and B-cycle.

C_{0}, C_{1} : curves from P_{0} to P.
$\Longrightarrow\left[C_{1}-C_{0}\right]=m[A]+n[B]$ for some $m, n \in \mathbb{Z}$.

$$
\int_{C_{1}} \omega_{1}=\int_{C_{0}} \omega_{1}+m \int_{A} \omega_{1}+n \int_{B} \omega_{1} .
$$

We call

$$
\int_{A} \omega_{1}: A \text {-period of 1-form } \omega_{1}, \int_{B} \omega_{1}: B \text {-period of 1-form } \omega_{1} \text {. }
$$

Let us compute A - and B-periods for the case $\varphi(z)=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)$, i.e.,

$$
\omega_{1}=\frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}} .
$$

For simplicity, assume $k \in \mathbb{R}, 0<k<1$.

Recall the construction of $\overline{\mathcal{R}}$:
Two \mathbb{P}^{1} 's are glued together along cuts between two pairs of roots of $\varphi(z)$.

$$
\text { roots of } \varphi(z)= \pm 1, \pm k^{-1}
$$

Cut \mathbb{P}^{1} 's along $\left[-k^{-1},-1\right]$ and $\left[1, k^{-1}\right]$ and glue.
(Figure of A - and B-cycles on \mathbb{P}^{1} 's)

Periods of ω_{1} :

$$
\int_{A} \omega_{1}=4 K(k), \quad \int_{B} \omega_{1}=2 i K^{\prime}(k),
$$

where

- $K(k)=\int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}$: complete elliptic integral of the first kind.
- $K^{\prime}(k):=K\left(k^{\prime}\right), k^{\prime}:=\sqrt{1-k^{2}}$ (supplementary modulus).

Proof:

$$
\int_{A} \omega_{1}=\int_{-1}^{1} \frac{d x}{+\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int_{1}^{-1} \frac{d x}{-\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}
$$

(Note: \pm of the denominators are different because of branches.)

$$
=4 \int_{0}^{1} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}=4 K(k) .
$$

$$
\begin{aligned}
\int_{B} \omega_{1} & =\int_{1}^{1 / k} \frac{d x}{+\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}+\int_{1 / k}^{1} \frac{d x}{-\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}} \\
& =2 \int_{1}^{1 / k} \frac{d x}{\sqrt{\left(1-x^{2}\right)\left(1-k^{2} x^{2}\right)}}=2 i \int_{1}^{1 / k} \frac{d x}{\sqrt{\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)}}
\end{aligned}
$$

(N.B.: $1 \leq x \leq 1 / k \Rightarrow x^{2}-1 \geq 0,1-k^{2} x^{2} \geq 0$.)

Change of the variable: $x=\frac{1}{\sqrt{1-k^{\prime 2} t^{2}}}$, i.e., $x^{2}=\frac{1}{1-k^{\prime 2} t^{2}}$,

$$
d x=\frac{k^{\prime 2} t}{\left(1-k^{\prime 2} t^{2}\right)^{3 / 2}} d t, \quad\left(x^{2}-1\right)\left(1-k^{2} x^{2}\right)=\frac{k^{\prime 4} t^{2}\left(1-t^{2}\right)}{\left(1-k^{\prime 2} t^{2}\right)^{2}}
$$

Hence,

$$
\int_{B} \omega_{1}=2 i \int_{0}^{1} \frac{d t}{\sqrt{\left(1-t^{2}\right)\left(1-k^{\prime 2} t^{2}\right)}}=2 i K\left(k^{\prime}\right)=2 i K^{\prime}(k)
$$

Remark:

- Signs of $\sqrt{ }$ should be chosen carefully.
- For general $k \in \mathbb{C}$, the results are the same (analytic continuation).

Recall:

$$
\text { " } A \text {-period of } \frac{d z}{\sqrt{1-z^{2}}}=2 \pi=\text { period of } \sin (u) . "
$$

Correspondingly,

$$
A \text {-period of } \frac{d z}{\sqrt{\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)}}=4 K(k)=\text { period of } \operatorname{sn}(u)!
$$

What is the role of the B-period $2 i K^{\prime}(k)$ for $\operatorname{sn}(u)$?
\longrightarrow Another period of $\operatorname{sn}(u)$, i.e., $\operatorname{sn}(u)$ is doubly-periodic!
Details will be discussed later...

Recall ω_{1} is holomorphic on $\overline{\mathcal{R}}$.
$\Longrightarrow F(P)=\int_{P_{0} \rightarrow P} \omega_{1}$ defines a holomorphic function on $\overline{\mathcal{R}}$.

Conclusion:
The integral of ω_{1} is a multi-valued holomorphic function on $\overline{\mathcal{R}}$.

§6.2 Complex elliptic integral of the second kind

$$
\int \sqrt{\frac{1-k^{2} z^{2}}{1-z^{2}}} d z=\int \frac{1-k^{2} z^{2}}{\sqrt{\varphi(z)}} d z, \quad \varphi(z)=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right)
$$

Corresponding Riemann surface $=\mathcal{R}=\left\{(z, w) \mid w^{2}=\varphi(z)\right\}$ as before. The compactification $=\overline{\mathcal{R}}$: elliptic curve.

$$
\omega_{2}:=\sqrt{\frac{1-k^{2} z^{2}}{1-z^{2}}} d z=\frac{1-k^{2} z^{2}}{\sqrt{\varphi(z)}} d z=\frac{1-k^{2} z^{2}}{w} d z
$$

is holomorphic on \mathcal{R} as ω_{1}. (In particular, at $z= \pm 1, \pm k^{-1}$.)

How does this form behave at $\left\{\infty_{ \pm}\right\}=\overline{\mathcal{R}} \backslash \mathcal{R}$?

Local coordinate at $\pm \infty: \xi=z^{-1}$.

$$
\begin{aligned}
\omega_{2} & =\sqrt{\frac{1-k^{2} \xi^{-2}}{1-\xi^{-2}}} d\left(\xi^{-1}\right)=\sqrt{\frac{\xi^{2}-k^{2}}{\xi^{2}-1}} \cdot\left(-\xi^{-2}\right) d \xi \\
& =-\xi^{-2}\left(\pm k+O\left(\xi^{2}\right)\right) d \xi=\left(\frac{\mp k}{\xi^{2}}+(\text { holomorphic at } \xi=0)\right) d \xi
\end{aligned}
$$

$\Longrightarrow \omega_{2}$ has double poles at $\infty_{ \pm}$without residues: $\operatorname{Res}_{\infty_{ \pm}} \omega_{2}=0$.
$\Longrightarrow G(P):=\int_{P_{0} \rightarrow P} \omega_{2}=\int_{C \text { : contour from } P_{0} \text { to } P} \omega_{2}$ is

- locally well-defined. (Cauchy's theorem \& residues $=0$.)
- holomorphic in P except at $\infty_{ \pm}$.
- has a simple pole at $\infty_{ \pm}: G(P)= \pm \frac{k}{\xi}+$ (holomorphic at $\xi=0$).

Namely, $G(P)$ is a multi-valued meromorphic function on $\overline{\mathcal{R}}$.

Global multi-valuedness: similar to the case of ω_{1}.
C_{0}, C_{1} : curves from P_{0} to P.
$\Longrightarrow\left[C_{1}-C_{0}\right]=m[A]+n[B]$ for some $m, n \in \mathbb{Z}$.

$$
\begin{gathered}
\int_{C_{1}} \omega_{2}=\int_{C_{0}} \omega_{2}+m \int_{A} \omega_{2}+n \int_{B} \omega_{2} . \\
\int_{A} \omega_{2}: A \text {-period of } \omega_{2}, \int_{B} \omega_{2}: B \text {-period of } \omega_{2} .
\end{gathered}
$$

Exercise: Express the A-period of ω_{2} in terms of the complete elliptic integral of the second kind.

§6.3 Complex elliptic integral of the third kind

$$
\begin{gathered}
\int \frac{d z}{\left(z^{2}-a^{2}\right) \sqrt{\varphi(z)}}, \quad \varphi(z)=\left(1-z^{2}\right)\left(1-k^{2} z^{2}\right) \\
\omega_{3}:=\frac{d z}{\left(z^{2}-a^{2}\right) \sqrt{\varphi(z)}}=\frac{d z}{\left(z^{2}-a^{2}\right) w}
\end{gathered}
$$

is holomorphic on the elliptic curve (including $\infty_{ \pm}$) except at four points:

$$
(z, w)=\left(\pm a, \pm \sqrt{\left(1-a^{2}\right)\left(1-k^{2} a^{2}\right)}\right)
$$

These are simple poles.

Exercise: (i) Check these facts. (ii) Compute the residues at poles.

$$
H(P):=\int_{P_{0} \rightarrow P} \omega_{3}
$$

is multi-valued in the neighbourhood of simple poles because of the residue.

And, of course, globally multi-valued because of the A - and B-periods.
$\Longrightarrow H(P)$ is a very complicated multi-valued function.

Remark:

A meromorphic 1-form ω on a Riemann surface is called an Abelian differential. It is

- of the first kind, when ω is holomorphic everywhere.
- of the second kind, when the residue is zero at any pole.
- of the third kind, otherwise.
$\Longrightarrow \omega_{1}$: the first kind, ω_{2} : the second kind, ω_{3} : the third kind.
(There are several differnent definitions; e.g.,
- "'an Abelian differential of the third kind' has only simple poles",
- "'an Abelian differential of the second kind' has only one pole of order $\geqq 2$ without residue", etc.)

