Elliptic Functions

Complex Elliptic Integrals

$\S6.1$ Complex elliptic integral of the first kind

Want: elliptic integrals $\int_C R(x,\sqrt{\varphi(x)}) \, dx$ with complex variables.

C: curve on the Riemann surface \mathcal{R} of $\sqrt{\varphi(z)}$,

or its compactification $\bar{\mathcal{R}}$ = the elliptic curve.

Let us begin with $\int \frac{dz}{\sqrt{\varphi(z)}}$, the elliptic integral of the first kind. $\omega_1 := \frac{dz}{\sqrt{\varphi(z)}} = \frac{dz}{w}.$ We know that ω_1 is holomorphic on $\mathcal{R} = \overline{\mathcal{R}} \setminus \{\infty\}$ (deg $\varphi = 3$) or $\mathcal{R} = \overline{\mathcal{R}} \setminus \{\infty_{\pm}\}$ (deg $\varphi = 4$). (Problem **11** (ii).)

How about on neighbourhoods of infinities?

Assume deg $\varphi = 4$: $\varphi(z) = a(z - \alpha_0)(z - \alpha_1)(z - \alpha_2)(z - \alpha_3)$. (The case deg $\varphi = 3$ is similar.)

Recall:

- (a local coordinate at ∞_{\pm}) = $\xi = z^{-1}$.
- the equation of ${\mathcal R}$ in the neighbourhood of ∞_\pm :

$$\eta^2 = a(1 - \alpha_0 \xi)(1 - \alpha_1 \xi)(1 - \alpha_2 \xi)(1 - \alpha_3 \xi),$$

where $\eta = w z^{-2}$.

• $\infty_{\pm} = (\xi = 0, \eta = \pm \sqrt{a} \neq 0).$

Consequently,

- $d\xi = -z^{-2} dz$.
- $\omega_1 = \frac{dz}{w} = -\frac{d\xi}{\eta}.$
- $\eta(\xi) = \sqrt{a(1 \alpha_0 \xi)(1 \alpha_1 \xi)(1 \alpha_2 \xi)(1 \alpha_3 \xi)}$ is holomorphic in ξ and $\eta(\xi) \neq 0$ in the neighbourhood of $\xi = 0$.
- $\implies \omega_1$ is holomorphic at ∞_{\pm} .

<u>Conclusion</u>: ω_1 is holomorphic everywhere on $\overline{\mathcal{R}}$.

Moreover, $\omega_1 \neq 0$ everywhere on $\overline{\mathcal{R}}$.

$$(\omega_1 = \frac{1}{w}dz \text{ on } \mathcal{R} \text{ and } \frac{1}{w} \neq 0; \ \omega_1 = -\frac{1}{\eta}d\xi \text{ at } \infty_{\pm} \text{ and } -\frac{1}{\eta} \neq 0.)$$

<u>Exercise</u>: Show that ω_1 is holomorphic everywhere and nowhere-vanishing in the case deg $\varphi = 3$.

Fix $P_0 \in \overline{\mathcal{R}}$.

 ω_1 is a holomorphic one-form on $\overline{\mathcal{R}}$.

$$\implies F(P) := \int_{P_0 \to P} \omega_1 = \int_{C: \text{ contour from } P_0 \text{ to } P} \omega_1$$

is "locally" well-defined.

Figure of $\overline{\mathcal{R}}$ and C:

 $\Leftrightarrow F(P)$ does not change by "small perturbation of C." Exactly speaking, by Cauchy's integral theorem,

$$[C - C'] = 0 \text{ in } H_1(\bar{\mathcal{R}}, \mathbb{Z}) \Longrightarrow \int_C \omega_1 = \int_{C'} \omega_1$$

Is F(P) "globally" well-defined?

Need to know: How many "globally" different contours exist on $\bar{\mathcal{R}}$?

Answer from topology: $H_1(\overline{\mathcal{R}}, \mathbb{Z}) = \mathbb{Z}[A] \oplus \mathbb{Z}[B]$, which means:

for \forall closed curve C on $\overline{\mathcal{R}}$, $\exists ! m, n \in \mathbb{Z}$, such that

 $[C] = m[A] + n[B] \text{ in } H_1(\overline{\mathcal{R}}, \mathbb{Z}).$

Figure: *A*-cycle and *B*-cycle.

$$C_0, C_1: \text{ curves from } P_0 \text{ to } P.$$

$$\implies [C_1 - C_0] = m[A] + n[B] \text{ for some } m, n \in \mathbb{Z}.$$

$$\int_{C_1} \omega_1 = \int_{C_0} \omega_1 + m \int_A \omega_1 + n \int_B \omega_1.$$

We call

$$\int_{A} \omega_1: A \text{-period of 1-form } \omega_1, \int_{B} \omega_1: B \text{-period of 1-form } \omega_1.$$

Let us compute A- and B-periods for the case $\varphi(z)=(1-z^2)(1-k^2z^2),$ i.e.,

$$\omega_1 = \frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}}.$$

For simplicity, assume $k \in \mathbb{R}$, 0 < k < 1.

Recall the construction of $\overline{\mathcal{R}}$:

Two \mathbb{P}^1 's are glued together along cuts between two pairs of roots of $\varphi(z)$.

roots of $\varphi(z) = \pm 1, \pm k^{-1}$.

Cut \mathbb{P}^1 's along $[-k^{-1}, -1]$ and $[1, k^{-1}]$ and glue.

(Figure of A- and B-cycles on \mathbb{P}^1 's)

Periods of ω_1 :

$$\int_A \omega_1 = 4 K(k), \qquad \int_B \omega_1 = 2i K'(k),$$

where

•
$$K(k) = \int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}}$$
: complete elliptic integral of the first kind.

•
$$K'(k) := K(k')$$
, $k' := \sqrt{1 - k^2}$ (supplementary modulus).

Proof:

$$\int_{A} \omega_1 = \int_{-1}^{1} \frac{dx}{+\sqrt{(1-x^2)(1-k^2x^2)}} + \int_{1}^{-1} \frac{dx}{-\sqrt{(1-x^2)(1-k^2x^2)}}$$
(Note: \pm of the denominators are different because of branches.

$$=4\int_0^1 \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} = 4K(k).$$

$$\begin{split} \int_{B} \omega_{1} &= \int_{1}^{1/k} \frac{dx}{+\sqrt{(1-x^{2})(1-k^{2}x^{2})}} + \int_{1/k}^{1} \frac{dx}{-\sqrt{(1-x^{2})(1-k^{2}x^{2})}} \\ &= 2 \int_{1}^{1/k} \frac{dx}{\sqrt{(1-x^{2})(1-k^{2}x^{2})}} = 2i \int_{1}^{1/k} \frac{dx}{\sqrt{(x^{2}-1)(1-k^{2}x^{2})}} \\ \end{split}$$
 (N.B.: $1 \leq x \leq 1/k \Rightarrow x^{2} - 1 \geq 0, \ 1 - k^{2}x^{2} \geq 0.$)

Change of the variable:
$$x=rac{1}{\sqrt{1-k'^2t^2}}$$
, i.e., $x^2=rac{1}{1-k'^2t^2}$,

$$dx = \frac{k'^2 t}{(1 - k'^2 t^2)^{3/2}} dt, \qquad (x^2 - 1)(1 - k^2 x^2) = \frac{k'^4 t^2 (1 - t^2)}{(1 - k'^2 t^2)^2}.$$

Hence,

$$\int_{B} \omega_1 = 2i \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k'^2t^2)}} = 2i K(k') = 2i K'(k).$$

Remark:

- Signs of $\sqrt{}$ should be chosen carefully.
- For general $k \in \mathbb{C}$, the results are the same (analytic continuation).

Recall:

"A-period of
$$\frac{dz}{\sqrt{1-z^2}} = 2\pi = \text{period of } \sin(u)$$
."

Correspondingly,

A-period of
$$\frac{dz}{\sqrt{(1-z^2)(1-k^2z^2)}} = 4 K(k) = \text{period of } \operatorname{sn}(u)!$$

What is the role of the *B*-period 2i K'(k) for sn(u)?

 \longrightarrow Another period of $\operatorname{sn}(u)$, i.e., $\operatorname{sn}(u)$ is doubly-periodic!

Details will be discussed later...

Recall ω_1 is holomorphic on $\overline{\mathcal{R}}$.

 $\implies F(P) = \int_{P_0 \to P} \omega_1 \text{ defines a <u>holomorphic</u> function on <math>\overline{\mathcal{R}}$.

Conclusion:

The integral of ω_1 is a multi-valued holomorphic function on $\overline{\mathcal{R}}$.

 $\S6.2$ Complex elliptic integral of the second kind

$$\int \sqrt{\frac{1-k^2 z^2}{1-z^2}} \, dz = \int \frac{1-k^2 z^2}{\sqrt{\varphi(z)}} \, dz, \qquad \varphi(z) = (1-z^2)(1-k^2 z^2).$$

Corresponding Riemann surface $= \mathcal{R} = \{(z, w) \mid w^2 = \varphi(z)\}$ as before. The compactification $= \overline{\mathcal{R}}$: elliptic curve.

$$\omega_2 := \sqrt{\frac{1 - k^2 z^2}{1 - z^2}} \, dz = \frac{1 - k^2 z^2}{\sqrt{\varphi(z)}} \, dz = \frac{1 - k^2 z^2}{w} \, dz$$

is holomorphic on \mathcal{R} as ω_1 . (In particular, at $z = \pm 1, \pm k^{-1}$.)

How does this form behave at $\{\infty_{\pm}\} = \overline{\mathcal{R}} \setminus \mathcal{R}$?

Local coordinate at $\pm \infty$: $\xi = z^{-1}$.

$$\begin{split} \omega_2 &= \sqrt{\frac{1-k^2\xi^{-2}}{1-\xi^{-2}}} \, d(\xi^{-1}) = \sqrt{\frac{\xi^2-k^2}{\xi^2-1}} \cdot (-\xi^{-2}) \, d\xi \\ &= -\xi^{-2}(\pm k + O(\xi^2)) \, d\xi = \left(\frac{\mp k}{\xi^2} + (\text{holomorphic at } \xi = 0)\right) \, d\xi. \end{split}$$

 $\implies \omega_2$ has double poles at ∞_{\pm} without residues: $\operatorname{Res}_{\infty_{\pm}} \omega_2 = 0$.

$$\implies G(P) := \int_{P_0 \to P} \omega_2 = \int_{C: \text{ contour from } P_0 \text{ to } P} \omega_2 \quad \text{is}$$

- locally well-defined. (Cauchy's theorem & residues = 0.)
- holomorphic in P except at ∞_{\pm} .

• has a simple pole at
$$\infty_{\pm}$$
: $G(P) = \pm \frac{k}{\xi} + (\text{holomorphic at } \xi = 0).$

Namely, G(P) is a multi-valued meromorphic function on \mathcal{R} .

Global multi-valuedness: similar to the case of ω_1 .

 C_0 , C_1 : curves from P_0 to P.

$$\implies [C_1 - C_0] = m[A] + n[B] \text{ for some } m, n \in \mathbb{Z}.$$
$$\int_{C_1} \omega_2 = \int_{C_0} \omega_2 + m \int_A \omega_2 + n \int_B \omega_2.$$
$$\int_A \omega_2: \text{ A-period of } \omega_2, \int_B \omega_2: \text{ B-period of } \omega_2.$$

<u>Exercise</u>: Express the A-period of ω_2 in terms of the complete elliptic integral of the second kind.

 $\S6.3$ Complex elliptic integral of the third kind

$$\int \frac{dz}{(z^2 - a^2)\sqrt{\varphi(z)}}, \qquad \varphi(z) = (1 - z^2)(1 - k^2 z^2).$$

$$\omega_3 := \frac{dz}{(z^2 - a^2)\sqrt{\varphi(z)}} = \frac{dz}{(z^2 - a^2)w}$$

is holomorphic on the elliptic curve (including ∞_{\pm}) except at four points:

$$(z,w) = (\pm a, \pm \sqrt{(1-a^2)(1-k^2a^2)}).$$

These are *simple poles*.

Exercise: (i) Check these facts. (ii) Compute the residues at poles.

$$H(P) := \int_{P_0 \to P} \omega_3$$

is multi-valued in the neighbourhood of simple poles because of the residue.

And, of course, globally multi-valued because of the A- and B-periods.

 \implies H(P) is a very complicated multi-valued function.

<u>Remark</u>:

A meromorphic 1-form ω on a Riemann surface is called an *Abelian* differential. It is

- of the first kind, when ω is holomorphic everywhere.
- of the second kind, when the residue is zero at any pole.
- of the third kind, otherwise.

 $\implies \omega_1$: the first kind, ω_2 : the second kind, ω_3 : the third kind.

(There are several differnent definitions; e.g.,

- "an Abelian differential of the third kind' has only simple poles",
- "'an Abelian differential of the second kind' has only one pole of order ≥ 2 without residue", etc.)