
Elliptic Functions

Complex Elliptic Integrals
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§6.1 Complex elliptic integral of the first kind

Want: elliptic integrals

∫

C
R(x,

√
φ(x)) dx with complex variables.

C: curve on the Riemann surface R of
√

φ(z),

or its compactification R̄ = the elliptic curve.

Let us begin with

∫
dz√
φ(z)

, the elliptic integral of the first kind.

ω1 :=
dz√
φ(z)

=
dz

w
.

2



We know that ω1 is holomorphic on R = R̄∖ {∞} (degφ = 3) or

R = R̄∖ {∞±} (degφ = 4). (Problem 11 (ii).)

How about on neighbourhoods of infinities?

Assume degφ = 4: φ(z) = a(z − α0)(z − α1)(z − α2)(z − α3).

(The case degφ = 3 is similar.)

Recall:

• (a local coordinate at ∞±) = ξ = z−1.

• the equation of R̄ in the neighbourhood of ∞±:

η2 = a(1− α0ξ)(1− α1ξ)(1− α2ξ)(1− α3ξ),

where η = wz−2.

• ∞± = (ξ = 0, η = ±√
a ̸= 0).
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Consequently,

• dξ = −z−2 dz.

• ω1 =
dz

w
= −dξ

η
.

• η(ξ) =
√

a(1− α0ξ)(1− α1ξ)(1− α2ξ)(1− α3ξ) is holomorphic in ξ

and η(ξ) ̸= 0 in the neighbourhood of ξ = 0.

=⇒ ω1 is holomorphic at ∞±.

Conclusion: ω1 is holomorphic everywhere on R̄.

Moreover, ω1 ̸= 0 everywhere on R̄.

(ω1 =
1

w
dz on R and

1

w
̸= 0; ω1 = −1

η
dξ at ∞± and −1

η
̸= 0.)

Exercise: Show that ω1 is holomorphic everywhere and nowhere-vanishing

in the case degφ = 3.
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Fix P0 ∈ R̄.

ω1 is a holomorphic one-form on R̄.

=⇒ F (P ) :=

∫

P0→P
ω1 =

∫

C: contour from P0 to P
ω1

is “locally” well-defined.

Figure of R̄ and C:

⇔ F (P ) does not change by “small perturbation of C.”

Exactly speaking, by Cauchy’s integral theorem,

[C − C ′] = 0 in H1(R̄,Z) =⇒
∫

C
ω1 =

∫

C′
ω1.
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Figure: [C − C ′] = 0.

Is F (P ) “globally” well-defined?

Need to know: How many “globally” different contours exist on R̄?

Answer from topology: H1(R̄,Z) = Z[A]⊕ Z[B], which means:

for ∀ closed curve C on R̄, ∃!m,n ∈ Z, such that

[C] = m[A] + n[B] in H1(R̄,Z).

Figure: A-cycle and B-cycle.
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C0, C1: curves from P0 to P .

=⇒ [C1 − C0] = m[A] + n[B] for some m,n ∈ Z.
∫

C1

ω1 =

∫

C0

ω1 +m

∫

A
ω1 + n

∫

B
ω1.

We call∫

A
ω1: A-period of 1-form ω1,

∫

B
ω1: B-period of 1-form ω1.

Let us compute A- and B-periods for the case φ(z) = (1− z2)(1− k2z2),

i.e.,

ω1 =
dz√

(1− z2)(1− k2z2)
.

For simplicity, assume k ∈ R, 0 < k < 1.
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Recall the construction of R̄:

Two P1’s are glued together along cuts between two pairs of roots of φ(z).

roots of φ(z) = ±1,±k−1.

Cut P1’s along [−k−1,−1] and [1, k−1] and glue.

(Figure of A- and B-cycles on P1’s)
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Periods of ω1:
∫

A
ω1 = 4K(k),

∫

B
ω1 = 2iK ′(k),

where

• K(k) =

∫ 1

0

dx√
(1− x2)(1− k2x2)

: complete elliptic integral of the

first kind.

• K ′(k) := K(k′), k′ :=
√
1− k2 (supplementary modulus).

Proof:
∫

A
ω1 =

∫ 1

−1

dx

+
√

(1− x2)(1− k2x2)
+

∫ −1

1

dx

−
√

(1− x2)(1− k2x2)

(Note: ± of the denominators are different because of branches.)

= 4

∫ 1

0

dx√
(1− x2)(1− k2x2)

= 4K(k).
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∫

B
ω1 =

∫ 1/k

1

dx

+
√

(1− x2)(1− k2x2)
+

∫ 1

1/k

dx

−
√

(1− x2)(1− k2x2)

= 2

∫ 1/k

1

dx√
(1− x2)(1− k2x2)

= 2i

∫ 1/k

1

dx√
(x2 − 1)(1− k2x2)

(N.B.: 1 ≤ x ≤ 1/k ⇒ x2 − 1 ≥ 0, 1− k2x2 ≥ 0.)

Change of the variable: x =
1√

1− k′2t2
, i.e., x2 =

1

1− k′2t2
,

dx =
k′2t

(1− k′2t2)3/2
dt, (x2 − 1)(1− k2x2) =

k′4t2(1− t2)

(1− k′2t2)2
.

Hence,
∫

B
ω1 = 2i

∫ 1

0

dt√
(1− t2)(1− k′2t2)

= 2iK(k′) = 2iK ′(k).
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Remark:

• Signs of
√

should be chosen carefully.

• For general k ∈ C, the results are the same (analytic continuation).

Recall:

“A-period of
dz√
1− z2

= 2π = period of sin(u).”

Correspondingly,

A-period of
dz√

(1− z2)(1− k2z2)
= 4K(k) = period of sn(u)!

What is the role of the B-period 2iK ′(k) for sn(u)?

−→ Another period of sn(u), i.e., sn(u) is doubly-periodic!

Details will be discussed later...
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Recall ω1 is holomorphic on R̄.

=⇒ F (P ) =

∫

P0→P
ω1 defines a holomorphic function on R̄.

Conclusion:

The integral of ω1 is a multi-valued holomorphic function on R̄.
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§6.2 Complex elliptic integral of the second kind

∫ √
1− k2z2

1− z2
dz =

∫
1− k2z2√

φ(z)
dz, φ(z) = (1− z2)(1− k2z2).

Corresponding Riemann surface = R = {(z, w) | w2 = φ(z)} as before.

The compactification = R̄: elliptic curve.

ω2 :=

√
1− k2z2

1− z2
dz =

1− k2z2√
φ(z)

dz =
1− k2z2

w
dz

is holomorphic on R as ω1. (In particular, at z = ±1,±k−1.)

How does this form behave at {∞±} = R̄∖R?
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Local coordinate at ±∞: ξ = z−1.

ω2 =

√
1− k2ξ−2

1− ξ−2
d(ξ−1) =

√
ξ2 − k2

ξ2 − 1
· (−ξ−2) dξ

= −ξ−2(±k +O(ξ2)) dξ =

(∓k

ξ2
+ (holomorphic at ξ = 0)

)
dξ.

=⇒ ω2 has double poles at ∞± without residues: Res∞± ω2 = 0.

=⇒ G(P ) :=

∫

P0→P
ω2 =

∫

C: contour from P0 to P
ω2 is

• locally well-defined. (Cauchy’s theorem & residues = 0.)

• holomorphic in P except at ∞±.

• has a simple pole at ∞±: G(P ) = ±k

ξ
+ (holomorphic at ξ = 0).
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Namely, G(P ) is a multi-valued meromorphic function on R̄.

Global multi-valuedness: similar to the case of ω1.

C0, C1: curves from P0 to P .

=⇒ [C1 − C0] = m[A] + n[B] for some m,n ∈ Z.
∫

C1

ω2 =

∫

C0

ω2 +m

∫

A
ω2 + n

∫

B
ω2.

∫

A
ω2: A-period of ω2,

∫

B
ω2: B-period of ω2.

Exercise: Express the A-period of ω2 in terms of the complete elliptic

integral of the second kind.
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§6.3 Complex elliptic integral of the third kind

∫
dz

(z2 − a2)
√

φ(z)
, φ(z) = (1− z2)(1− k2z2).

ω3 :=
dz

(z2 − a2)
√

φ(z)
=

dz

(z2 − a2)w

is holomorphic on the elliptic curve (including ∞±) except at four points:

(z, w) = (±a,±
√

(1− a2)(1− k2a2)).

These are simple poles.

Exercise: (i) Check these facts. (ii) Compute the residues at poles.
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H(P ) :=

∫

P0→P
ω3

is multi-valued in the neighbourhood of simple poles because of the

residue.

And, of course, globally multi-valued because of the A- and B-periods.

=⇒ H(P ) is a very complicated multi-valued function.
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Remark:

A meromorphic 1-form ω on a Riemann surface is called an Abelian

differential. It is

• of the first kind, when ω is holomorphic everywhere.

• of the second kind, when the residue is zero at any pole.

• of the third kind, otherwise.

=⇒ ω1: the first kind, ω2: the second kind, ω3: the third kind.

(There are several differnent definitions; e.g.,

• “‘an Abelian differential of the third kind’ has only simple poles”,

• “‘an Abelian differential of the second kind’ has only one pole of order

≧ 2 without residue”, etc.)
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