Elliptic Functions

Complex Elliptic Integrals



30.1 Complex elliptic integral of the first kind

Want: elliptic integrals / R(z,\/o(x)) dx with complex variables.
C

C': curve on the Riemann surface R of /p(2),

or its compactification R = the elliptic curve.

d
Let us begin with © , the elliptic integral of the first kind.
Ve(z)
dz dz
W1 «— - —
p(z) W



We know that w;y is holomorphic on R = R \ {oo} (deg ¢ = 3) or
R =R~ {oot} (degp = 4). (Problem 11 (ii).)
How about on neighbourhoods of infinities?

Assume degp = 4: p(z) =a(z — ag)(z — a1)(z — a2)(z — az).
(The case deg ¢ = 3 is similar.)

Recall:
e (a local coordinate at coy) = € = 271,
e the equation of R in the neighbourhood of co..:
7 = a(l — agé) (1 — a1€)(1 — az€)(1 — az),
2

where n = wz™~.

e cor = (§=0,n=%Va#0).



Consequently,

o df = —27%dz.
dz d&

® W] — — — ——.
w n

e (&) = a(l — apé)(1 — a1€)(1 — a€)(1 — asf) is holomorphic in &
and 7(&) # 0 in the neighbourhood of £ = 0.

—> w; Is holomorphic at co4.

Conclusion: w; is holomorphic everywhere on R.

Moreover, wy # 0 everywhere on R.

1 1 1 1
(wp = —dzon R and — # 0; w; = ——d§ at oox and —— # 0.)
w w n n

Exercise: Show that wj is holomorphic everywhere and nowhere-vanishing

in the case deg o = 3.



Fix Py € R.

w1 I1s a holomorphic one-form on R.

:>F(P)::/ w1:/ W1
Po—P C': contour from Py to P

s “locally” well-defined.

Figure of R and C:

< F(P) does not change by “small perturbation of C.”

Exactly speaking, by Cauchy’s integral theorem,

[C C/] =0 1in H1 :>/w1 / w1 .



Figure: [C'—C'] = 0.

Is F'(P) “globally” well-defined?

Need to know: How many “globally” different contours exist on R?

Answer from topology: Hy(R,Z) = Z[A] & Z[B], which means:

for V closed curve C on R, 3'm.n € Z, such that

|IC] =m[A] +n|B] in H(R,Z).

Figure: A-cycle and B-cycle.




Co, Cq: curves from F, to P.

— |[C] — Cy] = B| for some m,n € 7Z.

/wl /w1+m/w1—|—n/
Ch Co

/ wi: A-period of 1-form wy, / w1: B-period of 1-form w;.
A B

We call

Let us compute A- and B-periods for the case ¢(z) = (1 — 2?)(1 — k?2?),

l.e.,
dz

V(I = 22)(1—k222)

For simplicity, assume k € R, 0 < k < 1.

Wi =




Recall the construction of R:

Two P!'s are glued together along cuts between two pairs of roots of ¢(z).
roots of p(z) = +1,+k~ 1.

Cut PY's along [—k~1, —1] and [1, k7] and glue.

(Figure of A- and B-cycles on P!'s)




Periods of wi:

[kq=4K%x A;n:%k%m,

where

1 dx o
= / . complete elliptic integral of the
o V- 21— k2a?)
first kind.
o K'(k):= K(K'), k' := 1 — k? (supplementary modulus).

Proof:

/ / N ! da
w
) ++/(1 — :132 — k?x?) —/(1 —22)(1 — k2a22)

(Note: + of the denominators are different because of branches.)

— 4K (k).

dx
_4A VA=) - 2a?)
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/ L /W /= a:2 = 1222 /1; e x;l;j(l ~ 1222

1/k . 1/k dr
o = 1
1 \/'1-—-$2 (1-—-k2x2) 1 /(22 = 1) (1 — k222)
(NB:1<a2<1/k=2*-1>0,1-k*2%>0)
1 1
Change of the variable: z = Nk e, 12 = e
k/2t k/4t2 1 — t2
dr = dt, (% —1)(1 — k*2%) = ( )

(1 _ k’2t2)3/2 (1 _ k’2t2)2

Hence,

/ wy = 22/ T t2 — = 2i K (k') = 2i K'(k).
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Remark:

e Signs of va should be chosen carefully.

e For general k € C, the results are the same (analytic continuation).

Recall:
A-period of = 271 = period of sin(u).
1 — 22
Correspondingly,
d
A-period of - = 4 K (k) = period of sn(u)!

V-2 - k%)
What is the role of the B-period 2i K'(k) for sn(u)?

— Another period of sn(u), i.e., sn(u) is doubly-periodic!

Details will be discussed later...
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Recall w; is holomorphic on R.

— F(P) = / w1 defines a holomorphic function on R.
Po—)P

Conclusion:

The integral of w; is a multi-valued holomorphic function on R.
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30.2 Complex elliptic integral of the second kind

/\/11__]222 dz = \/ﬁ2 p(2) = (1 —2%)(1 — k*2°).

Corresponding Riemann surface = R = {(z,w) | w? = (z)} as before.

The compactification = R: elliptic curve.

1 — k222 1 — k227 1 — k?2°
w2::\/ kde: Zdz: Zdz
122 o(2) w

is holomorphic on R as wy. (In particular, at z = &1, £k 1))

How does this form behave at {co4} = R\ R?
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Local coordinate at +o00: & = z71.

1 — k2£—2 2 _ 2
wzz\/ 1_;;2 d(fl):\/igl '(_5_2)655

= ¢ 2 (+k+0(£2)) de = (? + (holomorphic at £ = 0)) dg.

—> wg has double poles at co4 without residues: Ress, wa = 0.

:>G(P)3:/ w2:/ Wy IS
Po—P C': contour from Fy to P

e locally well-defined. (Cauchy's theorem & residues = 0.)

e holomorphic in P except at co.

k
e has a simple pole at co4: G(P) = ig—k (holomorphic at £ = 0).
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Namely, G(P) is a multi-valued meromorphic function on R.

Global multi-valuedness: similar to the case of w;y.
Co, Cq: curves from F, to P.

— [C]1 — Cp| = B| for some m,n € Z.

/wg /w2+m/w2—|—n/w2.
Ch Co

/wg: A-period of wo, / wq: B-period of ws.
A B

Exercise: Express the A-period of wy in terms of the complete elliptic

integral of the second kind.
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36.3 Complex elliptic integral of the third kind

dz 2Y(1 — k242)
/<Z2a2) = el = (-0 -k

dz dz

W3 = (22— a2)\/o(2) T (22— a?)w

is holomorphic on the elliptic curve (including ooy ) except at four points:

(z,w) = (£a, £/(1 — a?)(1 — k2a2)).

These are simple poles.

Exercise: (i) Check these facts. (ii) Compute the residues at poles.
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Is multi-valued in the neighbourhood of simple poles because of the

residue.
And, of course, globally multi-valued because of the A- and B-periods.

— H(P) is a very complicated multi-valued function.

17



Remark:

A meromorphic 1-form w on a Riemann surface is called an Abelian
differential. It is

e of the first kind, when w is holomorphic everywhere.
e of the second kind, when the residue is zero at any pole.
e of the third kind, otherwise.

— w1q: the first kind, wy: the second kind, ws: the third kind.

(There are several differnent definitions; e.g.,

e "“‘an Abelian differential of the third kind" has only simple poles”,

e "“‘an Abelian differential of the second kind' has only one pole of order

2> 2 without residue”, etc.)
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