
Elliptic Functions

Abel-Jacobi theorem
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§7.1 Abel-Jacobi theorem

Recall: periods of ω1 =
dz√
φ(z)

=
dz

w
belong to Γ := ZΩA + ZΩB:

ΩA :=

∫

A
ω1, ΩB :=

∫

B
ω1.

=⇒ The Abel-Jacobi map:

AJ : R̄ � P �→
∫ P

P0

ω1 mod Γ ∈ C/Γ

is well-defined. (P0: a fixed point in R̄.)

Remark: There is an “Abel-Jacobi map” associated to any compact

Riemann surface. The above AJ is a special case.
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Theorem (Abel-Jacobi theorem)

(i) The Abel-Jacobi map AJ is bijective.

(ii) It is an isomorphism of complex manifolds between R̄ and C/Γ.

Proof of (ii) ⇐= (i):

• AJ is holomorphic (⇐ definition).

• Complex analysis:

The inverse map of a holomorphic bijection is holomorphic.

The essential part of the theorem is bijectivity (i).
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§7.2 Surjectivity of AJ (Jacobi’s theorem)

Recall:

• The image of a compact set by a continuous map is compact.

• A compact subset of a Hausdorff space is closed.

AJ : holomorphic ⇒ continuous.

R̄: compact.

}
⇒ AJ(R̄): compact. ⇒ closed in C/Γ.

On the other hand,

• A holomorphic map is open, i.e., the image of an open set is open.

=⇒ AJ(R̄) is open in C/Γ.
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AJ(R̄) is closed & open in C/Γ.

=⇒ AJ(R̄) is a connected component of C/Γ.

But C/Γ is connected!

Hence,

AJ(R̄) = C/Γ.

Corollary:

ΩA and ΩB are linearly independent over R. In particular, ΩA,ΩB �= 0.

Proof: R̄: compact =⇒ C/Γ = AJ(R̄): compact.

↔ If ΩA & ΩB: linearly dependent/R, Γ = ZΩA + ZΩB ⊂ RΩA or RΩB.

=⇒ C/Γ is not compact.
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§7.3 Injectivity of AJ (Abel’s theorem)

Assumption: AJ(P1) = AJ(P2), but P1 �= P2.

Goal: Construct a meromorphic function f(z) on R̄ such that

• f has a unique pole at P2, which is simple.

• f(z) = 0 ⇔ z = P1. (This property will not be used.)

But such f cannot exist!

Because, as ω1 is a holomorphic nowhere vanishing differential,

• f(z)ω1 has a simple pole at P2. =⇒
∫

C
f(z)ω1 �= 0.

• f(z)ω1 is holomoprhic elsewhere. =⇒
∫

C
f(z)ω1 = 0.

(C: a small circle around P2; Figure)

Contradiction =⇒ P1 = P2.
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Construction of f(z):

We define f(z) by

f(z) := exp

(∫ z

Q0

ω3(P1, P0)−
∫ z

Q0

ω3(P2, P0)−
2πiN

ΩA

∫ z

Q0

ω1

)
.

Notations:

• Q0: a fixed point �= P0, P1, P2.

• ω3(P,Q): an normalised Abelian differential of the third kind with

simple poles at P and Q normalised by

– ResP ω3(P,Q) = 1, ResQ ω3(P,Q) = −1.

–

∫

A
ω3(P,Q) = 0.

Existence of such ω3 shall be proved later.

• N : an integer determined later.
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Need to show:

• f(z) has a simple pole at P2 (and a simple zero at P1).

• f(z) is a single-valued meromorphic function on R̄.

f(z) has a simple pole at P2. (The proof of f(P1) = 0 is similar.)

ω3(P2, P0) =

(
1

z − P2
+ (holomorphic function)

)
dz at P2.

=⇒
∫ z

Q0

ω3(P2, P0) = log(z − P2) + (holomorphic function).

When z → P2, only this term in the definition of f(z) diverges.

=⇒ f(z) ∼ exp (− log(z − P2) + (holomorphic function))

=
1

z − P2
× (non-zero holomorphic function).
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Single-valuedness of f(z).

Possible multi-valuedness ← ambiguity of integration contours.

Three types of contours should be checked.

(i) contours around singularities of ω3(P1, P0) and ω3(P2, P0).

(ii) contours around the A-cycle.

(iii) contours around the B-cycle.

• Case (i).

When z goes around P1: (The proofs for P2 and P0 are the same.)

∫ z⟲P1

Q0

ω3(P1, P0) =

∫ z

Q0

ω3(P1, P0) + 2πi.

(z ⟲P1 means that the contour additionally goes around P1.)

=⇒ f(z) �→ f(z)× e2πi = f(z). OK!
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• Case (ii).

Recall

∫

A
ω3(P,Q) = 0 =⇒

∫ z⟲A

Q0

ω3(Pi, P0) =

∫ z

Q0

ω3(Pi, P0).

(z ⟲A: the contour additionally goes around the A-cycle.)

On the other hand,

∫ z⟲A

Q0

ω1 =

∫ z

Q0

ω1 + ΩA.

=⇒ f(z) �→ f(z)× exp

(
−2πiN

ΩA
ΩA

)
= f(z). OK!

• Case (iii).

Lemma: ∃ contour C : Q → P such that
∫

B
ω3(P,Q) =

2πi

ΩA

∫

C
ω1.

We prove this lemma later.
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(∫ z⟲B

Q0

ω3(P1, P0)−
∫ z⟲B

Q0

ω3(P2, P0)

)

−
(∫ z

Q0

ω3(P1, P0)−
∫ z

Q0

ω3(P2, P0)

)

=

∫

B
ω3(P1, P0)−

∫

B
ω3(P2, P0)

Lemma
=

2πi

ΩA

(∫ P1

P0

ω1 −
∫ P2

P0

ω1

)
.

Assumption AJ(P1) = AJ(P2) means

∫ P1

P0

ω1 −
∫ P2

P0

ω1 = MΩA +NΩB

for some M,N ∈ Z. This is the “N” in the definition of f(z).
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=⇒ f(z) �→ f(z) exp

(
2πi

ΩA
(MΩA +NΩB)−

2πiN

ΩA

∫

B
ω1

)

= f(z) exp

(
2πiM +

2πiNΩB

ΩA
− 2πiN

ΩA
ΩB

)

= f(z).

Single-valuedness proved!! = End of the proof of the Abel-Jacobi theorem.

It remains to show:

• Lemma.

• Existence of ω3(P,Q).

12



• Proof of the lemma.

F (z) :=

∫ z

P0

ω1: multivalued holomorphic function on R̄

(incomplete elliptic integral of the first kind).

Cut R̄ along A- and B-cycles to a rectangle S: (Figure)

By the residue theorem,

1

2πi

∫

∂S
F (z)ω3(P,Q) = ResP F (z)ω3(P,Q) + ResQ F (z)ω3(P,Q)

= F (P )− F (Q) =

∫ P

P0

ω1 −
∫ Q

P0

ω1 =

∫ P

Q
ω1.

(All the contours are in S.)
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On the other hand,
∫

∂S
F (z)ω3(P,Q) =

(∫

A−
−
∫

A+

+

∫

B+

−
∫

B−

)
F (z)ω3(P,Q).

From the multi-valuedness of F (z),
∫

A−
F (z)ω3(P,Q)−

∫

A+

F (z)ω3(P,Q)

=

∫

A
(F (z)− F (z ⟲B))ω3(P,Q)

=

∫

A

(
−
∫

B
ω1

)
ω3(P,Q) = −

(∫

B
ω1

) (∫

A
ω3(P,Q)

)

= 0.

(
Recall the normalisation :

∫

A
ω3(P,Q) = 0.

)
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Similarly,
∫

B+

F (z)ω3(P,Q)−
∫

B−
F (z)ω3(P,Q)

=

(∫

A
ω1

) (∫

B
ω3(P,Q)

)
= ΩA

∫

B
ω3(P,Q).

As a result,

2πi

∫ P

Q
ω1 = ΩA

∫

B
ω3(P,Q).
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• Proof of the existence of ω3(P,Q).

We have only to show existence of ω̃3(P,Q) with simple poles at P and Q,

ResP ω̃3(P,Q) = 1, ResQ ω̃3(P,Q) = −1.

Because:

• ω̃3(P,Q) + λω1 has the same property for any λ ∈ C.

•
∫

A
ω1 = ΩA �= 0.

=⇒ If λ = − 1

ΩA

∫

A
ω̃3(P,Q),

ω3(P,Q) := ω̃3(P,Q) + λω1

satisfies all the conditions, including

∫

A
ω3(P,Q) = 0.

16



• Construction of ω̃3(P,Q).

Recall: R̄ = compactification of R = {(z, w) | w2 = φ(z)},

φ(z) = a(z − α0)(z − α1)(z − α2)(z − α3).

Case I. P,Q �= ∞±.

Denote P = (z1, w1 =
√

φ(z1)), Q = (z2, w2 =
√

φ(z2)).

(Branches of
√

are defined appropriately.)

ω̃3(P,Q) :=
1

2

(
w + w1

z − z1
− w + w2

z − z2

)
dz

w
.

Exercise: Check that this ω̃3(P,Q) satisfies the required properties:

holomorphic on R̄∖ {P,Q}, simple poles at P , Q, ResP = 1, ResQ = −1.

(Use an appropriate coordinate, especially at ∞± and (z, w) = (αi, 0)!)
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Case II. P = ∞+, Q �= ∞±.

Case III. P = ∞+, Q = ∞−.

Exercise: Find ω̃3(P,Q) for the cases II and III.

(Hint: When z1 → ∞, w1 ∼ ±√
a z21 . =⇒ ω̃3(P,Q) of Case I diverges.

Find an appropriate λ = λ(z1) and take lim
z1→∞

(ω̃3(P,Q)− λω1).)

Exercise∗: Find ω̃3(P,Q) when degφ = 3.

Remark:

There is such ω3(P,Q) on any compact Riemann surface.

The proof requires much analysis!
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