Elliptic Functions

Abel-Jacobi theorem



37.1 Abel-Jacobi theorem

d d
- % belong to I' := ZQ 4 + ZS)p:

p(z) W

QA ::/wl, QB ::/wl.
A B

—> The Abel-Jacobi map:

Recall: periods of w; =

P

AJ:R>Pw wi modI' e C/T
Py

is well-defined. (Py: a fixed point in R.)

. T . 1" . AJ(Po)=0
Remark: There is an “Abel-Jacobi map” associated to any compact

Riemann surface. The above AJ is a special case.
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Theorem (Abel-Jacobi theorem)

(i) The Abel-Jacobi map AJ is bijective.

(ii) It is an isomorphism of complex manifolds between R and C/T".

Proof of (ii) < (i):

e AJ is holomorphic (<« definition).

e Complex analysis:

The inverse map of a holomorphic bijection is holomorphic.

The essential part of the theorem is bijectivity (i).



87.2 Surjectivity of AJ (Jacobi's theorem)

Recall:
e The image of a compact set by a continuous map is compact.

e A compact subset of a Hausdorff space is closed.

AJ: hol hic = conti - 5
olomOorphic = contintuous } = AJ(R): compact. = closed in C/T".

R: compact.

On the other hand,

e A holomorphic map is open, i.e., the image of an open set is open.

— AJ(R) is open in C/T".



AJ(R) is closed & open in C/T".

— AJ(R) is a connected component of C/I".

But C/T" is connected!

Hence,
AJ(R)=C/T.

C/r ;0

Corollary: op
0

(24 and g are linearly independent over R. In particular, 24,5 # 0.

Proof: R: compact = C/T' = AJ(R): compact.
— If Q4 & Qp: linearly dependent /R, I' = ZQ 4 + ZQp C RO 4 or RO p.

— C/T" is not compact. [



87.3 Injectivity of AJ (Abel's theorem)
Assumption: AJ(P;) = AJ(Ps), but P; # Ps.

Goal: Construct a meromorphic function f(z) on R such that
e f has a unique pole at P», which is simple.
e f(z) =0« z= P;. (This property will not be used.)
But such f cannot exist!

Because, as w; is a holomorphic nowhere vanishing differential,

e f(z)wy has a simple pole at P,. — / f(z)wy # 0.
C

<)

e f(2)w; is holomoprhic elsewhere. —> / f(z)w; = 0.
C

(C: a small circle around Ps; Figure)

Contradiction — P; = P. []



Construction of f(z):
We define f(z) by

f(z) == exp (/z w3 (Pr, Py) — /Z w3 (P, Py) — 2V [ wl) :

Qo Qo 4 Qo

Notations:
e (Jo: a fixed point # Py, Py, Ps.

e w3(P,Q): an normalised Abelian differential of the third kind with
simple poles at P and () normalised by

— Respws(P, Q) =1, Resgws(P, Q) = —1.
_ / (,U3(P,Q) = 0.

A
Existence of such ws shall be proved later.

e N: an integer determined later.



Need to show:
e f(2) has a simple pole at P, (and a simple zero at P).

e f(z) is a single-valued meromorphic function on R.

f(z) has a simple pole at P». (The proof of f(P;) =0 is similar.)

w3 (P, Py) = ( + (holomorphic function)) dz at Ps.

Z—P2

— w3 (P, Py) = log(z — P») + (holomorphic function).
Qo

When z — P», only this term in the definition of f(z) diverges.

—  f(2) ~exp (—log(z — Py) + (holomorphic function))

1
= X (non-zero holomorphic function).
Z — P2




Single-valuedness of f(z).

Possible multi-valuedness <— ambiguity of integration contours.

Three types of contours should be checked.
(i) contours around singularities of w3 (P, Py) and ws(Ps, Fy).
(i) contours around the A-cycle.
(iii) contours around the B-cycle.
e Case (i).
When z goes around P;: (The proofs for P> and P, are the same.)

20 p, z
/ wg(Pl, Po) = / wg(Pl, P()) + 271.
0

0

(z Op, means that the contour additionally goes around P;.)
— f(2) — f(2) x 2™ = f(2). OK!
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e Case (ii).

Recall / w3(P,Q)=0—=
A

20

zZ
w3(P7;,P0)=/ w3 (P, Fy).
Qo 0

(z Oa: the contour additionally goes around the A-cycle.)

zOA z
On the other hand, / W] = / w1+ Q4.
0

0

— f(2) — f(2) x exp <_27§T2Z;4NQA> = f(z). OKI

e Case (iii).

Lemma: 3 contour C' : () — P such that
271
/wS(P7Q) — Q—/ Wi.
B A JC

We prove this lemma later.
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zOpB zOB
(/ ws(P1, Py) —/ WS(P27PO))
Qo 0
— (/ W?)(PlaPO)_/ w3(P2,P0))
Qo Qo
Lemma 277'@ P
= /WB(PLPO)_/WZ%(PQ,PO = (/ w1—/ M)-
B B Py

Assumption AJ(P;) = AJ(P>) means

/ i — — MQa+ NQp

for some M, N € Z. This is the “N" in the definition of f(z).

11



— J(2) > f(2) exp (?{Z(Mm + Ny 2N )

= f(z) exp (27m'M +

= f(2).

2miNQg  2mN
(24 (24

Single-valuedness proved!! = End of the proof of the Abel-Jacobi theorem.

[]

It remains to show:

e Lemma.

e Existence of w3(P, Q).
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e Proof of the lemma.

z
F(z):= / wy: multivalued holomorphic function on R
o

(incomplete elliptic integral of the first kind).

Cut R along A- and B-cycles to a rectangle S: (Figure)

By the residue theorem,

L. F(z)w3(P,Q) = Resp F(2) w3(P, Q) + Resg F(2) ws(P, Q)

271 oS
— F( / W1 — / w1 = / w1.
Py Py

(All the contours are in S.)
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On the other hand,

[romea-(], [ [, -], )romira

From the multi-valuedness of F(z),
/ F(2)ws(P,Q) — / F(2)ws(P, Q)
A_ Al
_ /A (F(z) - F(z Op)) ws(P.Q)

(s (f=) ([fusra)

= 0. <Reca|l the normalisation : / w3(P, Q) = 0.)
A
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Similarly,

/ F(2)ws(P,Q) — / F(2)ws(P, Q)
By B_

_ (/Awl) (/ng(P,Q)> =04 /ng(P,Q)-

27m'/Qpcu1 — Q4 /ng(P,Q).

As a result,
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e Proof of the existence of ws3(P, Q).

We have only to show existence of w3(P, Q) with simple poles at P and @,
Resp w3 (P, Q) =1, Resg w3 (P, Q) = —1.
Because:

e W3(P, Q)+ Mwi has the same property for any A € C.

° / wip =Ny #0.
A
1 -
— IfA\=—— [ &3(P,Q),
Q4 Ja

UJ3(P, Q) ‘= @3(P7 Q) + )‘wl

satisfies all the conditions, including / w3(P, Q) =0.
A
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e Construction of W3(P, Q).

Recall: R = compactification of R = {(z,w) | w? = ¢(2)},
p(2) = alz —ao)(z — ) (z — a2) (2 — a3).

Case |. P,() # oo.

Denote P = (21, w1 = \/©(21)), Q = (22, w2 = \/(22)).

(Branches of /~ are defined appropriately.)

@3<P7 Q) c= 5

1<w+w1 w+w2) dz

Z — 21 Z — 29 w

Exercise: Check that this w3( P, Q) satisfies the required properties:
holomorphic on R \ { P, Q}, simple poles at P, Q, Resp = 1, Resg = —1.

(Use an appropriate coordinate, especially at co+ and (z,w) = («;,0)!)
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Case ll. P =004, ) # oco4.

Case lll. P=00,, ) = 00_.

Exercise: Find @w3(P, Q) for the cases Il and IlI.

(Hint: When 21 — oo, wy ~ +/a 22, = &3(P, Q) of Case | diverges.

Find an appropriate A = A(z1) and take lim (W3(P,Q) — A\w1).)

21 —>00

Exercise*: Find w3(P, Q) when degp = 3.

Remark:

There is such w3(P, Q) on any compact Riemann surface.

The proof requires much analysis!
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