Neksur 4
Прикуии DanaMisepa: Ot Hbwtorobaknarpan*eby gpopuалиzuy.

How то поb opopmanидм кеуgoden тем, ито l ypabuenuex Howtona ирикyictbynot zapanee nemzectnoce
 nogpoineñ ux cboñcrba.

Kak paסoravor cunar peakesuu:
Mpumep 1. Cunr peakyuu b rbépgour rene.
 точки m_{1}, \vec{r}_{1} и m_{2}, \vec{r}_{2}, соединёгите жесткисн rebeconoru стер*кен. Cтер*ень оঠесnerиbaer огралиигение иа glon*ение точек:

$$
\begin{equation*}
\left|\vec{r}_{1}-\vec{r}_{2}\right|=\text { const } \tag{1}
\end{equation*}
$$

nayorbaemel cbeybio.
kory ob) на точки geñcibynot cunar peakgcu (cm. рис.) направленнне bgons стер*ия, равноне no велиии. нe u uporubonono *rane no ranpabreruto (oठrecnute)

$$
\left[\begin{array}{l}
\vec{F},-\vec{F}-\text { cuncr peakesur } \\
\vec{r}_{:}=\vec{r}_{1}-\vec{r}_{2}
\end{array}\right.
$$

Boorucnum cymmapnyso paioty tux cus
 Hago upountezupoloato 1 -gpopeny:

$$
\left(\vec{F}, d \vec{r}_{2}\right)+\left(-\vec{F}, d \vec{r}_{1}\right)=-(\vec{F} ; d \vec{r})
$$

bgonь траелтории gber*ения ractuиs $\vec{r}(t)=\vec{r}_{1}(t)-\vec{r}_{2}(t$ Banetnu, 2 º b cury ycrobus cbazu:

$$
\begin{aligned}
& d\left(\vec{r}^{2}\right)=d\left.\left(\vec{r}_{1}-\vec{r}_{2}\right)^{2}\right)=0, \text { To ecto } \\
&(\vec{r}(t) d \vec{r}(t))=0 \Leftrightarrow \vec{r}(t) \perp d \vec{r}(t)
\end{aligned}
$$

Ognako $\vec{F} \| \vec{r}$, norrnyy $\vec{F} \perp d \vec{r}(t)$, chegobatenono $(\vec{F}, d \vec{r}(H))=0$. Saknночан:

B tbepgon tene cymмapnal paSota сил реакуии стер*неіт ири л木反om hеремеиении тела pabna reynco.
Mpumep 2: Cunor peakyum onopor.

$$
\xrightarrow[N]{\vec{r}} d(t)
$$

Paccusipuer glu*eme B rone cryzae cuna peakyum onopor \vec{N} gon*na ygobnetbopert ycrobuvo $(\vec{N} d \vec{r}(t))=0$

Bgect un upegnono*uru, uTo teno he nogиро \quad ивает ири gbи*ении no onope-cbijb ygep*и banousal, а сама cbez6 zagaeral ypabкением nobepxnoctu buga

$$
\begin{equation*}
f(\vec{r})=0 \tag{2}
\end{equation*}
$$

B san cryzae $d \vec{r}$ kanpabrek ho kacatemonoй k nobepxwoctu, a \vec{N} eil optoronanert, u cregobatenowo

Cuna peakymu onopor rnagnoin nobepxnoctu (2) pa80 m ne cobepuraet.

Ograko, kak ur yxe upobepunu (cm. 3agame 3, n.4) cuna peakymu ragkon onopor moxer cobepmat paiory b rom cnyral, ecnu onopa gbuxeral u ypabrenue doiju jagaetal ycnobuem

$$
\begin{equation*}
f(\vec{r}, t)=0 \tag{3}
\end{equation*}
$$

B ssom cryrae

$$
\begin{align*}
& \left(\frac{\partial f}{\partial \vec{r}}, d \vec{r}\right)+\frac{\partial f}{\partial t}=0 \tag{4}\\
& d \vec{r} \neq \frac{\partial f}{\partial \vec{r}}, \operatorname{com} \frac{\partial f}{\partial t} \neq 0
\end{align*}
$$

u Tak kar $\vec{N} \| \frac{\partial f}{\partial \vec{r}}$, To $\quad(\vec{N}, d \vec{r}(t)) \neq 0$

Haznegroris ирunep rakar curyayuu - gbu*emue Sycurkn no Bpansarousenyal crep *wo (см. Nекуино 1, ст 15). Bраияалоисй̃a стертеньgbu*yusarci onopa, el ypabrenue:

$$
\operatorname{arctg} \frac{y}{x}=\varphi=\omega t
$$

noərony $\vec{N} \not X d \vec{r}(t) u$ cuna \vec{N} cobepmaer paioty, upuboglusyw k изменекино кинетической эгерии oycurticu (ometo cr. Bagarue 3, $N^{\circ} 4$).
B cuстемах co cbizem, थbro zabnciuyum ot bренен, тина (3), сило peakyun gbu*yusuxal onop hepnengukynepror ne pean6иоин hepemeyemull ten $d \vec{r}(t)$, a, так каzobaенои, buptyanbnoun $\overrightarrow{o r}$
Def: Bupryanoroum nepeмеуекиаи материалоnou тоики b moment bpenem $t=t_{0}$ нagobbaeria mosoe el bojeno*nae nepenenjenne bgonb" zamopoxennos" l manent to daeju.

Hanpunne, gus dogu (3) bupryanonoull ebne etal modoe nepenemenue, ygobrerboperongee

$$
\text { yacemenat } \quad\left(\frac{\partial f(\vec{r}, t)}{\partial \vec{r}}, \delta \vec{r}\right)=0
$$

Otrunue takoro $\delta \vec{r}$ ot $d \vec{r}(\mathrm{~cm}$. (4)) onebugno. Momeтno также, 4то b разиос моменто времени

 ное nерененение - aro перинеияение bgons раgиуса: $\delta \vec{r} \| \vec{e}_{\rho}$.

Moкетие bиртуапокохх перешешленй gus характери zaysun cus peakymu ncnorozobar Daracirep.

cbeslum сумmapuas paiota an peaksuи ka nooox buptyanonorx nepememenuex pabna rynıo

Moecнeme: иgearonoun кајobсnstas cbuzu, которое be nopoxgarot cun tperms, cun neynpyzor gegoppuagun
 Ha bupry anonox nepemememuex.

Bocnonozyences upuseyunom Danculidepa gele исknonemus cus peakyun ngeanorax cbezeir nz ypabteernü Howtona.

Utak, nycto nama mexanureacass cuctenle coctout uz n vacruy: $\vec{r}_{i}, m_{i}, i=1,2, \ldots, n$. Mycio на "i"-10 racturyy b cucteml geñctby 10 is uzbeitkas Ham opyngamentanokas cuna \bar{F}_{i} (tuna cunor Kynorea, cunor техести...) u cuna peakyun ugeanororx cbazeî \vec{N}_{i}. Ypabkenus Mrworona gur cuctemn nueror long:

$$
\begin{equation*}
m_{i} \stackrel{\ddot{r}}{i}=\vec{F}_{i}+\vec{N}_{i} \quad i=1,2, \ldots, n \tag{6}
\end{equation*}
$$

 *erentam" coszamen) nepemемserns ractuy $\delta \vec{r}_{i}$, и сумmupys no i, noryraem

$$
\begin{aligned}
& \text { no } i \text {, nomyrahu } \\
& \sum_{i=1}^{n} m_{i}\left(\vec{r}_{i}, \delta \vec{r}_{i}\right)=\sum_{i=1}^{n}\left(\vec{F}_{i}, \delta \vec{r}_{i}\right)+\sum_{i=1}^{n}\left(\vec{N}_{i}, \delta \vec{r}_{i}\right) \\
& \text { cnaraluoe }
\end{aligned}
$$

B cuny nриниguna Danamiepa, nocregnee craraemoe b upaboù ractu zakyneetar, u mor umeem:

$$
\begin{equation*}
\sum_{i=1}^{n} m_{i}\left(\ddot{\vec{r}}_{i}, \delta \vec{r}_{i}\right)=\sum_{i=1}^{n}\left(\vec{F}_{i}, \delta \vec{r}_{i}\right) \tag{7}
\end{equation*}
$$

Ypabnenия (7) у*е ке cogepжат renzbectrorx сил peak

уен N_{i}. Cколвко уравиении в мистене (7)"
Pobno ctonono, kakoba pazмериост иростракстba bup ryanonoгx nеременении $\delta \vec{r}_{i}$. DTo upocipancito, connacko (5), cobnagaet с касатеnonoun. ирострак cibom к nobepxnости cbizer ири zанороженлай bремени. thy a pazueprons kacarensiozo upoctpanciba pabrea rиспу степене́ dooठogr систеног. Зкаиит b системе (7) независимогх уравиенит стопоко, скопько степенел cloofogo cuctemr, to ecto goctatoинoe nonuиесtbo.

Uтоסor npubect (7) к oonee ebrany bugy, upeg nono*um, ито Hama mex. систена имеет N cтепенё́ cboठogr u gonyckaet ebnyto napanerpuzaycto c nomousro N, таK Hazorbaemorx, ©סoסuserrurx koopgu Hat

$$
4 \alpha, \quad \alpha=1,2, \ldots, N
$$

Rem: Tериин "oסoסияениве кооряинатв" - историгесиит. Ozнаиаer, uto 9_{α} ormuavoris or 0800 rerix gevaptoboox koopgeneat \vec{r}_{i}. B nactnoctu, noneprore и сорерачесиие коорgинато no*no ornectu k 080δ ujerrentl.
Dlewsnemue nactus cuctenn no nobepxnoctu clozés «ри Jтом zagaëtar ycnolou emи

$$
\begin{equation*}
\vec{r}_{i}=\vec{r}_{i}\left(q_{1}, q_{2}, \ldots, q_{N}, t\right) \tag{8}
\end{equation*}
$$

Зgeno $\vec{r}_{i}(\ldots)$ b иравой zactu - 2ro onpegeneнинre
 nobepxnonto cbezés. Iz (8) noryraen gus bupryano noox u peanoroix nepremensernit zactus u guis ux cioopocteit cootromenne:

$$
\left[\begin{array}{l}
\delta \vec{r}_{i}=\sum_{\alpha=1}^{N} \frac{\partial \vec{r}_{i}\left(q_{1} \ldots q_{N}, t\right)}{\partial q_{\alpha}} \delta q_{\alpha}\left(\text { (tyt } t=\text { const) }\left(g_{a}\right)\right. \\
d \vec{r}_{i}=\sum_{\alpha=1}^{N} \frac{\partial \vec{r}_{i}\left(q_{1} \ldots q_{N}, t\right)}{\partial q_{\alpha}} d q_{\alpha}+\frac{\partial \vec{r}_{i}\left(q_{1} q_{n}, t\right)}{\partial t\left(g_{k}\right)} d t \\
\dot{\vec{r}}_{i}=\sum_{\alpha=1}^{N} \frac{\partial \vec{r}_{i}\left(q_{1} \ldots q_{N}, t\right)}{\partial q_{\alpha}} \cdot \dot{q}^{\alpha}+\frac{\partial \vec{r}_{i}\left(q_{1}, q_{N}, t\right)}{\partial t}\left(q_{c}\right)
\end{array}\right.
$$

Bgect $8 q_{\alpha} / d q_{\alpha}$ - ироиgbonoroun набор смеизении/ Iguopopepensuanob nezabucumorx gpyz or gpyra oठоठизerevoox koopgureat. $\dot{q}_{\alpha}=\frac{d q_{\alpha}}{d t}$ razabarotch odoסusers. \sim un cropoctinu.
 yus or 080δ yernerx koopgunear $q_{\alpha}, 080 \delta$ ме erenerx ckoростей \dot{q}_{α} и врешен: $\dot{\vec{r}}_{i}\left(q_{1 . \ldots}, q_{N}, \ldots \dot{q}_{N}, t\right)$, ирииёщ

$$
\begin{equation*}
\frac{\partial \dot{r}_{i}}{\partial \dot{q}_{\alpha}}=\frac{\partial \vec{r}_{i}}{\partial q_{\alpha}} \tag{10}
\end{equation*}
$$

Bанитти также, "то оnepatop bzetul nonnort ироиzвоgnai no lрешени - $\frac{d}{d t}-b$ ириненении $k \vec{F}_{i}\left(q_{1} \ldots a_{N}, t\right)$ meet bug:

$$
\frac{d}{d t}=\sum_{\beta=1}^{N} \dot{q}_{\beta} \frac{\partial}{\partial q_{\beta}}+\frac{\partial}{\partial t}
$$

u or kommyтирует coneparopoul bzerus ractioñ upouflognnat no $q_{\alpha}-\frac{\partial}{\partial q_{\alpha}}$ (no ne каимутируетe $\frac{\partial}{\partial \dot{q}_{\alpha}}$)

$$
\begin{equation*}
\left(\frac{\partial \vec{r}_{i}}{\partial q_{\alpha}}\right)^{\circ}=\frac{d}{d t}\left(\frac{\partial \vec{r}_{i}}{\partial q_{\alpha}}\right)^{2}=\frac{\partial}{\partial q_{\alpha}} \frac{d \vec{r}_{i}}{d t}=\frac{\partial \dot{\vec{r}}_{i}}{\partial q_{\alpha}} \tag{11}
\end{equation*}
$$

Teneps un rotobr upeospajobar nebyv nacto gинанинеских уравпении (7), по дстаbub ryga borpaxernus gell $\delta \vec{r}_{i}$ (9_{a}) u nanonojobab (10), (11):

$$
\begin{aligned}
& m_{i}\left(\ddot{\overrightarrow{r_{i}}}, \delta \vec{r}_{i}\right)=\sum_{\alpha=1}^{N} m_{i}\left(\frac{\ddot{\vec{r}}}{i}, \frac{\partial \vec{r}_{i}}{\partial q_{\alpha}}\right) \delta q_{\alpha}=
\end{aligned}
$$

$$
\begin{aligned}
& \text { - npoubergenuene }
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\alpha=1}^{N} m_{i}\left\{\left(\dot{\vec{r}}_{i}, \frac{\partial \dot{\vec{r}}_{i}}{\partial \dot{q}_{\alpha}}\right)^{0}-\left(\dot{\vec{r}}_{i}, \frac{\partial \dot{\vec{r}}_{i}}{\partial q_{\alpha}}\right)\right\} \delta q_{\alpha}= \\
& =\sum_{\alpha=1}^{N} m_{i} \cdot \frac{1}{2}\left\{\left(\frac{\partial}{\partial \dot{q}_{\alpha}}\left(\dot{\vec{r}_{i}}, \dot{\vec{r}}_{i}\right)\right)^{0}-\frac{\partial}{\partial q_{\alpha}}\left(\dot{\vec{r}}_{i}, \dot{\vec{r}}_{i}\right)\right\} \delta q_{\alpha}=
\end{aligned}
$$

$$
=\sum_{\alpha=1}^{N}\left\{\left(\frac{d}{d t} \cdot \frac{\partial}{\partial \dot{q}_{\alpha}}-\frac{\partial}{\partial q_{\alpha}}\right) \frac{m_{i} \dot{\vec{r}}_{i}^{2}}{2}\right\} \delta q_{\alpha} .
$$

 $T_{\text {kuн }}=\sum_{i=1}^{n} \frac{m_{i} \stackrel{\rightharpoonup}{r}_{i}^{2}}{2}$, mor ножен zanucato теперь rebyvo yacto (7) kak:

$$
\sum_{\alpha=1}^{N} \delta q_{\alpha}\left(\frac{d}{d t} \circ \frac{\partial}{\partial \dot{q}_{\alpha}}-\frac{\partial}{\partial q_{\alpha}}\right) T_{k u k}
$$

$(12 a)$

Mpeoठраzуен иравуко иаст. (7), иреgиололив, "то cuntr \vec{F}_{i}, geícsbyvonsue b nистенe, ebherothl norenyuanbuornel, to ears cyusentoyet pynkyus notenysuanoHoí sкeprui $U\left(\vec{r}_{1}, \ldots \vec{r}_{n}, t\right)(\mathrm{cm}$. стр. 4 Neкуsan 3):

$$
\vec{F}_{i}=-\frac{\partial U\left(\vec{r}_{1}, \ldots, \vec{r}_{n}, t\right)}{\partial \vec{r}_{i}} \equiv-\vec{\nabla}_{i} U\left(\vec{r}_{1, \ldots} \vec{r}_{n} t\right)
$$

Nogctabnean tro b upabyto nacro (7):

$$
\begin{aligned}
& \text { Mogctabneан әто b upaby10 иасів (T) } \\
& \sum_{i=1}^{n}\left(\vec{F}_{i}, \delta \vec{r}_{i}\right)=-\sum_{\alpha=1}^{N} \sum_{i=1}^{n}\left(\frac{\partial U}{\partial \vec{r}_{i}}, \frac{\partial \vec{r}_{i}}{\partial q_{\alpha}}\right) \delta q_{\alpha}= \\
& =-\sum_{\alpha=1}^{N} \delta q_{\alpha} \frac{\partial}{\partial q_{\alpha}} U(\underbrace{\left.\vec{r}_{1}\left(q_{1}, q_{N}, t\right), \ldots, \vec{r}_{n}\left(q_{1}, q_{N}, t\right), t\right)}_{\text {qруккуми сbедeй иу }(8)}
\end{aligned}
$$

Зсинетин тепер6, ито среgи аргунеттов J, кет oסoסusennoxx ckopocteit \dot{q}_{α}, no mony $\frac{\partial U}{\partial \dot{q}_{\alpha}}=0$, u
mor moжем написато:

Trege ка $(12 a)$ и $(12 b)$ естестbern оиреgenить:
Def: Drs mexamиеской систено n малериальках тонек $m_{i}, \vec{r}_{i}, i=1, \ldots, n$, b которой geiribly. noтensuanonore ank $\vec{F}_{i}=-\vec{\nabla}_{i} U$, и gbuхение кoto-

$$
\begin{equation*}
L\left(q_{1}, q_{2}, \ldots, q_{N}, \dot{q}_{1}, \ldots, \dot{q}_{N}, t\right)=T_{\text {Kuk }}-U \tag{13}
\end{equation*}
$$

Viragobacice narparкианом систено.

 координат и скоростей (cm. (8), (9c)).
 nuir (7) мо *ко соориуrupobaro b buge теopenor:
Th: Dbижение мехакинеской системи с потенияиаль
 оиреgemeetre ee rазрак*иакоиl $L(q, q, t)$. "e" ypabnemus glon*enus nueror bug:

$$
\begin{align*}
& \left(\frac{d}{d t} \circ \frac{\partial}{\partial \dot{q}_{\alpha}}-\frac{\partial}{\partial q_{\alpha}}\right) L\left(q_{1}, \ldots, q_{N}, \dot{q}_{1}, \ldots, \dot{q}_{N}, t\right)=0 \tag{12}\\
& \alpha=1, \ldots, N
\end{align*}
$$

Lu nazorbaroти ypabkemuиum Fúrepa-Nayparka
Pok-80: ypabnencus (14) cregylvt onebugno uy (7), (12a), $(12 b),(14)$, ести уreсто, 2 то bиртуаньиоле иеремеияения
 nezaloncumr.
Pazsepem кесколоно иримероb:
Mpurep 1 Maинина ATbyga (иример и马 сеиннара 1)

2 upysa ra rebecamon reрастехинйт aסconntho ziбnой нити, nерекинуто і nереz rebecomorí $\delta 10 \mathrm{~K}$, nomenserco b ogropagnoe nore texectu.
*) X_{1} и X_{2} - gbe gevaptoba koopgut⿻ato cuctentar (akaror \vec{r}_{i}).

Moәтому систена инеет $2-1=1$ степень (boठogor B kanectbe oסoסusernoй koopgnato no *ho boripati, craxell, $\quad x:=x_{1}$, torga napanetpuyobavenoe c nomoustio x ycrobne cbazu syger muero bug:
***) $\left\{\begin{array}{l}x_{1}=x \\ {\left[x_{2}=\text { const }-x\right.}\end{array}-\operatorname{arcanoz}(8)\right.$
Boppaxal $T_{\text {mun }}$ U boooסusererise noopgen atax

$$
\begin{aligned}
& \text { nongraull } T_{\text {kun }} \\
&=\frac{m_{1} \dot{x}_{1}^{2}}{2}+\frac{m_{2} \dot{x}_{2}^{2}}{2}=\frac{\left(m_{1}+m_{2}\right) \dot{x}^{2}}{2} \\
& U=m_{1} g x_{1}+m_{2} g x_{2}=\left(m_{1}-m_{2}\right) g x+\text { const } \\
&\left(F_{1}\right.\left.=-\frac{\partial U}{\partial x_{1}}=-m_{1} g, \quad F_{2}=-\frac{\partial U}{\partial x_{2}}=-m_{2} g, \quad \text { ªk u } \quad \text { Tpedyerca }\right)
\end{aligned}
$$

**** Λ arpari*uare cuctenor:

$$
\begin{aligned}
& \text { *) \arpare*uare cucrent: } \\
& L=T_{\text {kun }}-V=\frac{\left(m_{1}+m_{2}\right) \dot{x}^{2}}{2}-\left(m_{1}-m_{2}\right) g X+\cos t \\
& \text { aggutubncul }
\end{aligned}
$$

 gels notenguanonoй कौepru川, tak u ghes лаирик*иака. Deno brom, 2 «To V u L notom gupppeperesupynot gele nолугекия "оризиески" иктереснох сил \vec{F}_{i} и уравиеннол
 uponagaror. UTak Ligoonciantor b vu sygen bospaciobatr.

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{x}}=\left(m_{1}+m_{2}\right) \dot{x}, \frac{d}{d t} \circ \frac{\partial L}{\partial \dot{x}}=\left(m_{1}+m_{2}\right) \ddot{x} \\
& \frac{\partial L}{\partial x}=-\left(m_{1}-m_{2}\right) g
\end{aligned}
$$

***) Bnarut ypabnemur gbu*enul nnevor bug (1)

$$
\begin{aligned}
& \left(m_{1}+m_{2}\right) \ddot{x}+\left(m_{1}-m_{2}\right) g=0 \\
& -\ddot{x}_{2}=\ddot{x}_{1}=\sqrt[x]{\ddot{x}}=\frac{\left(m_{2}-m_{1}\right)}{\left(m_{1}+m_{2}\right)} g \\
& \text { - сравните с } \\
& \text { ответаи ка } \\
& \text { ctp. } 8.1 .
\end{aligned}
$$

Mpanep 2 : Marepuanonare torka нассо m gbuxeras b nnocuocth no kpuboin $y=f(x)$ (סycurka ка kpuboín upobonoke). Tperins кет, bкенких cun mer.
*) genaprobor koopgukaror: x, y
**) $0 \delta 0 \delta$ ијенисая voорgunата, ска*ен, x, ycnobue cbrju $y=f(x)$
***) Kunerureckas aneprue:

$$
T_{\text {kuk }}=\frac{m}{2}\left(\dot{x}^{2}+\dot{y}^{2}\right)=\frac{m}{2} \dot{x}^{2}\left(1+f^{\prime}(x)\right)
$$

$$
L(x, \dot{x})=T_{\text {kuk }}=\frac{m}{2} \dot{x}^{2}\left(1+f^{(2}(x)\right)
$$

$$
\begin{aligned}
& \frac{\partial L}{\partial \dot{x}}=m \dot{x}\left(1+f^{\prime 2}(x)\right) \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)=m \dot{x}\left(1+f^{\prime}(x)\right)+ \\
&+2 m \dot{x}^{2} f^{\prime}(x) f^{\prime \prime}(x) \\
& \frac{\partial L}{\partial x}=m \dot{x}^{2} f^{\prime}(x) f^{\prime \prime}(x)
\end{aligned}
$$

Dbuxeкие раbкomeproo $(\ddot{x}=$ const $)$ тon 6 ko ecm $f^{\prime \prime}(x)=0(y=c x)$.

